These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 25863123)

  • 1. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inferomedial femoral neck is compromised by age but not disease: Fracture toughness and the multifactorial mechanisms comprising reference point microindentation.
    Jenkins T; Katsamenis OL; Andriotis OG; Coutts LV; Carter B; Dunlop DG; Oreffo ROC; Cooper C; Harvey NC; Thurner PJ; The OStEO Group
    J Mech Behav Biomed Mater; 2017 Nov; 75():399-412. PubMed ID: 28803114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales.
    Zimmermann EA; Schaible E; Bale H; Barth HD; Tang SY; Reichert P; Busse B; Alliston T; Ager JW; Ritchie RO
    Proc Natl Acad Sci U S A; 2011 Aug; 108(35):14416-21. PubMed ID: 21873221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level.
    Katsamenis OL; Chong HM; Andriotis OG; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Jan; 17():152-65. PubMed ID: 23131790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ synchrotron radiation µCT indentation of cortical bone: Anisotropic crack propagation, local deformation, and fracture.
    Peña Fernández M; Schwiedrzik J; Bürki A; Peyrin F; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Sep; 167():83-99. PubMed ID: 37127075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling.
    Demirtas A; Curran E; Ural A
    Bone; 2016 Oct; 91():92-101. PubMed ID: 27451083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone as a Structural Material.
    Zimmermann EA; Ritchie RO
    Adv Healthc Mater; 2015 Jun; 4(9):1287-304. PubMed ID: 25865873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Novel Clinical Surrogates to Assess Human Bone Fracture Toughness.
    Granke M; Makowski AJ; Uppuganti S; Does MD; Nyman JS
    J Bone Miner Res; 2015 Jul; 30(7):1290-300. PubMed ID: 25639628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtensile failure mechanisms in lamellar bone: Influence of fibrillar orientation, specimen size and hydration.
    Casari D; Kochetkova T; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():391-402. PubMed ID: 34175475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative and qualitative bone imaging: A review of synchrotron radiation microtomography analysis in bone research.
    Obata Y; Bale HA; Barnard HS; Parkinson DY; Alliston T; Acevedo C
    J Mech Behav Biomed Mater; 2020 Oct; 110():103887. PubMed ID: 32957194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements.
    Vashishth D
    J Biomech; 2004 Jun; 37(6):943-6. PubMed ID: 15111083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural and compositional contributions towards the mechanical behavior of aging human bone measured by cyclic and impact reference point indentation.
    Abraham AC; Agarwalla A; Yadavalli A; Liu JY; Tang SY
    Bone; 2016 Jun; 87():37-43. PubMed ID: 27021150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth.
    Yeni YN; Norman TL
    J Biomed Mater Res; 2000 Sep; 51(3):504-9. PubMed ID: 10880095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of damage mechanisms associated with reference point indentation in human bone.
    Beutel BG; Kennedy OD
    Bone; 2015 Jun; 75():1-7. PubMed ID: 25659950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone.
    Demirtas A; Taylor EA; Gludovatz B; Ritchie RO; Donnelly E; Ural A
    J Mech Behav Biomed Mater; 2023 Sep; 145():106034. PubMed ID: 37494816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of age and loading rate on equine cortical bone failure.
    Kulin RM; Jiang F; Vecchio KS
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):57-75. PubMed ID: 21094480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re-evaluating the toughness of human cortical bone.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Bone; 2006 Jun; 38(6):878-87. PubMed ID: 16338188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of strain rate on fracture toughness of human cortical bone: a finite element study.
    Ural A; Zioupos P; Buchanan D; Vashishth D
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1021-32. PubMed ID: 21783112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of microstructure on crack propagation in cortical bone at the mesoscale.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2020 Nov; 112():110020. PubMed ID: 32980752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.