BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25863447)

  • 21. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II) ions onto the seed husk of Calophyllum inophyllum.
    Lawal OS; Sanni AR; Ajayi IA; Rabiu OO
    J Hazard Mater; 2010 May; 177(1-3):829-35. PubMed ID: 20083344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption optimization of lead (II) using Saccharum bengalense as a non-conventional low cost biosorbent: isotherm and thermodynamics modeling.
    Din MI; Hussain Z; Mirza ML; Shah AT; Athar MM
    Int J Phytoremediation; 2014; 16(7-12):889-908. PubMed ID: 24933891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of copper(II) using chitin/chitosan nano-hydroxyapatite composite.
    Rajiv Gandhi M; Kousalya GN; Meenakshi S
    Int J Biol Macromol; 2011 Jan; 48(1):119-24. PubMed ID: 20970443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of Cu(II) from aqueous solutions using chemically modified chitosan.
    Kannamba B; Reddy KL; AppaRao BV
    J Hazard Mater; 2010 Mar; 175(1-3):939-48. PubMed ID: 19942344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II).
    Liu L; Li C; Bao C; Jia Q; Xiao P; Liu X; Zhang Q
    Talanta; 2012 May; 93():350-7. PubMed ID: 22483922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adsorption Performance of Amino Functionalized Magnetic Molecular Sieve Adsorbent for Effective Removal of Lead Ion from Aqueous Solution.
    Guo C; Wang Y; Wang F; Wang Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly(methylmethacrylate) grafted chitosan: An efficient adsorbent for anionic azo dyes.
    Singh V; Sharma AK; Tripathi DN; Sanghi R
    J Hazard Mater; 2009 Jan; 161(2-3):955-66. PubMed ID: 18547715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies.
    Subbaiah MV; Vijaya Y; Kumar NS; Reddy AS; Krishnaiah A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):260-5. PubMed ID: 19716275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of uranium (VI) adsorption by polypyrrole.
    Abdi S; Nasiri M; Mesbahi A; Khani MH
    J Hazard Mater; 2017 Jun; 332():132-139. PubMed ID: 28285106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of organovermiculite-based adsorbent for removing anionic dye from aqueous solution.
    Yu X; Wei C; Ke L; Hu Y; Xie X; Wu H
    J Hazard Mater; 2010 Aug; 180(1-3):499-507. PubMed ID: 20466486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies.
    Igberase E; Osifo P; Ofomaja A
    Int J Anal Chem; 2017; 2017():6150209. PubMed ID: 28607557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, characterization and study of sorption parameters of multi-walled carbon nanotubes/chitosan nanocomposite for the removal of picric acid from aqueous solutions.
    Khakpour R; Tahermansouri H
    Int J Biol Macromol; 2018 Apr; 109():598-610. PubMed ID: 29275204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan-MAA nanoparticles.
    Heidari A; Younesi H; Mehraban Z; Heikkinen H
    Int J Biol Macromol; 2013 Oct; 61():251-63. PubMed ID: 23817093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes.
    Sheng GD; Shao DD; Ren XM; Wang XQ; Li JX; Chen YX; Wang XK
    J Hazard Mater; 2010 Jun; 178(1-3):505-16. PubMed ID: 20153109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption behavior of methylene blue on carbon nanotubes.
    Yao Y; Xu F; Chen M; Xu Z; Zhu Z
    Bioresour Technol; 2010 May; 101(9):3040-6. PubMed ID: 20060712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biopolymer-Grafted, Magnetically Tuned Halloysite Nanotubes as Efficient and Recyclable Spongelike Adsorbents for Anionic Azo Dye Removal.
    Vahidhabanu S; Adeogun AI; Babu BR
    ACS Omega; 2019 Jan; 4(1):2425-2436. PubMed ID: 31459481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of fluoride ions from aqueous solution by waste mud.
    Kemer B; Ozdes D; Gundogdu A; Bulut VN; Duran C; Soylak M
    J Hazard Mater; 2009 Sep; 168(2-3):888-94. PubMed ID: 19327886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites.
    Fan L; Luo C; Sun M; Li X; Qiu H
    Colloids Surf B Biointerfaces; 2013 Mar; 103():523-9. PubMed ID: 23261576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidized multiwalled carbon nanotubes as adsorbent for the removal of manganese from aqueous solution.
    Ganesan P; Kamaraj R; Sozhan G; Vasudevan S
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):987-96. PubMed ID: 22562345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.