These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 25863574)
1. Residual impact of aged nZVI on heavy metal-polluted soils. Fajardo C; Gil-Díaz M; Costa G; Alonso J; Guerrero AM; Nande M; Lobo MC; Martín M Sci Total Environ; 2015 Dec; 535():79-84. PubMed ID: 25863574 [TBL] [Abstract][Full Text] [Related]
2. Ecotoxicogenomic analysis of stress induced on Caenorhabditis elegans in heavy metal contaminated soil after nZVI treatment. Fajardo C; Martín M; Nande M; Botías P; García-Cantalejo J; Mengs G; Costa G Chemosphere; 2020 Sep; 254():126909. PubMed ID: 32957299 [TBL] [Abstract][Full Text] [Related]
3. A nanoremediation strategy for the recovery of an As-polluted soil. Gil-Díaz M; Diez-Pascual S; González A; Alonso J; Rodríguez-Valdés E; Gallego JR; Lobo MC Chemosphere; 2016 Apr; 149():137-45. PubMed ID: 26855217 [TBL] [Abstract][Full Text] [Related]
4. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Němeček J; Lhotský O; Cajthaml T Sci Total Environ; 2014 Jul; 485-486():739-747. PubMed ID: 24369106 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the stability of a nanoremediation strategy using barley plants. Gil-Díaz M; González A; Alonso J; Lobo MC J Environ Manage; 2016 Jan; 165():150-158. PubMed ID: 26431642 [TBL] [Abstract][Full Text] [Related]
6. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Vítková M; Puschenreiter M; Komárek M Chemosphere; 2018 Jun; 200():217-226. PubMed ID: 29486361 [TBL] [Abstract][Full Text] [Related]
7. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review. Xue W; Huang D; Zeng G; Wan J; Cheng M; Zhang C; Hu C; Li J Chemosphere; 2018 Nov; 210():1145-1156. PubMed ID: 30208540 [TBL] [Abstract][Full Text] [Related]
8. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. Gil-Díaz M; Alonso J; Rodríguez-Valdés E; Pinilla P; Lobo MC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1361-9. PubMed ID: 25072767 [TBL] [Abstract][Full Text] [Related]
9. Reducing As availability in calcareous soils using nanoscale zero valent iron. Azari P; Bostani AA Environ Sci Pollut Res Int; 2017 Sep; 24(25):20438-20445. PubMed ID: 28707247 [TBL] [Abstract][Full Text] [Related]
10. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Saccà ML; Fajardo C; Costa G; Lobo C; Nande M; Martin M Chemosphere; 2014 Jun; 104():184-9. PubMed ID: 24287264 [TBL] [Abstract][Full Text] [Related]
11. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. Vítková M; Rákosová S; Michálková Z; Komárek M J Environ Manage; 2017 Jan; 186(Pt 2):268-276. PubMed ID: 27292579 [TBL] [Abstract][Full Text] [Related]
12. Nano zerovalent Fe did not reduce metal(loid) leaching and ecotoxicity further than conventional Fe grit in contrasting smelter impacted soils: A 1-year field study. Lewandowská Š; Vaňková Z; Beesley L; Cajthaml T; Wickramasinghe N; Vojar J; Vítková M; Tsang DCW; Ndungu K; Komárek M Sci Total Environ; 2024 Jun; 927():171892. PubMed ID: 38531450 [TBL] [Abstract][Full Text] [Related]
13. Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe Fajardo C; Costa G; Nande M; Martín C; Martín M; Sánchez-Fortún S Sci Total Environ; 2019 Mar; 656():421-432. PubMed ID: 30513432 [TBL] [Abstract][Full Text] [Related]
14. Remediation of contaminated soils by enhanced nanoscale zero valent iron. Jiang D; Zeng G; Huang D; Chen M; Zhang C; Huang C; Wan J Environ Res; 2018 May; 163():217-227. PubMed ID: 29459304 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Cao Y; Zhang S; Zhong Q; Wang G; Xu X; Li T; Wang L; Jia Y; Li Y Ecotoxicol Environ Saf; 2018 Oct; 162():464-473. PubMed ID: 30015193 [TBL] [Abstract][Full Text] [Related]
16. Application of manures to mitigate the harmful effects of electrokinetic remediation of heavy metals on soil microbial properties in polluted soils. Tahmasbian I; Safari Sinegani AA; Nguyen TTN; Che R; Phan TD; Hosseini Bai S Environ Sci Pollut Res Int; 2017 Dec; 24(34):26485-26496. PubMed ID: 28948525 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of nanoremediation strategy in a Pb, Zn and Cd contaminated soil. Fajardo C; Sánchez-Fortún S; Costa G; Nande M; Botías P; García-Cantalejo J; Mengs G; Martín M Sci Total Environ; 2020 Mar; 706():136041. PubMed ID: 31855644 [TBL] [Abstract][Full Text] [Related]
18. Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn, Pb and Cd: A temporal study of solid phase geochemistry under changing soil conditions. Mitzia A; Vítková M; Komárek M Chemosphere; 2020 Mar; 242():125248. PubMed ID: 31896196 [TBL] [Abstract][Full Text] [Related]
19. Immobilisation of metal(loid)s in two contaminated soils using micro and nano zerovalent iron particles: Evaluating the long-term stability. Danila V; Kumpiene J; Kasiuliene A; Vasarevičius S Chemosphere; 2020 Jun; 248():126054. PubMed ID: 32023510 [TBL] [Abstract][Full Text] [Related]
20. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. El-Temsah YS; Joner EJ Chemosphere; 2013 Jun; 92(1):131-7. PubMed ID: 23522781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]