These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 25863574)
21. Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Wang G; Zhang S; Zhong Q; Xu X; Li T; Jia Y; Zhang Y; Peijnenburg WJGM; Vijver MG Sci Total Environ; 2018 Jun; 625():1021-1029. PubMed ID: 29996399 [TBL] [Abstract][Full Text] [Related]
22. Assessment of combined electro-nanoremediation of molinate contaminated soil. Gomes HI; Fan G; Mateus EP; Dias-Ferreira C; Ribeiro AB Sci Total Environ; 2014 Sep; 493():178-84. PubMed ID: 24946031 [TBL] [Abstract][Full Text] [Related]
23. Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Fajardo C; Saccà ML; Martinez-Gomariz M; Costa G; Nande M; Martin M Chemosphere; 2013 Oct; 93(6):1077-83. PubMed ID: 23816452 [TBL] [Abstract][Full Text] [Related]
24. Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil. Baragaño D; Forján R; Fernández B; Ayala J; Afif E; Gallego JLR Environ Sci Pollut Res Int; 2020 Sep; 27(27):33681-33691. PubMed ID: 32533482 [TBL] [Abstract][Full Text] [Related]
25. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Hernandez L; Probst A; Probst JL; Ulrich E Sci Total Environ; 2003 Aug; 312(1-3):195-219. PubMed ID: 12873411 [TBL] [Abstract][Full Text] [Related]
26. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231 [TBL] [Abstract][Full Text] [Related]
27. Microbial indicators of heavy metal contamination in urban and rural soils. Yang Y; Campbell CD; Clark L; Cameron CM; Paterson E Chemosphere; 2006 Jun; 63(11):1942-52. PubMed ID: 16310826 [TBL] [Abstract][Full Text] [Related]
28. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Fajardo C; Ortíz LT; Rodríguez-Membibre ML; Nande M; Lobo MC; Martin M Chemosphere; 2012 Feb; 86(8):802-8. PubMed ID: 22169206 [TBL] [Abstract][Full Text] [Related]
29. Copper and Chromium toxicity is mediated by oxidative stress in Caenorhabditis elegans: The use of nanoparticles as an immobilization strategy. Fajardo C; Martín C; Garrido E; Sánchez-Fortún S; Nande M; Martín M; Costa G Environ Toxicol Pharmacol; 2022 May; 92():103846. PubMed ID: 35288336 [TBL] [Abstract][Full Text] [Related]
30. Simultaneous stabilization of Pb and improvement of soil strength using nZVI. Zhou WH; Liu F; Yi S; Chen YZ; Geng X; Zheng C Sci Total Environ; 2019 Feb; 651(Pt 1):877-884. PubMed ID: 30257228 [TBL] [Abstract][Full Text] [Related]
31. Impact of Ag and Al₂O₃ nanoparticles on soil organisms: in vitro and soil experiments. Fajardo C; Saccà ML; Costa G; Nande M; Martin M Sci Total Environ; 2014 Mar; 473-474():254-61. PubMed ID: 24374587 [TBL] [Abstract][Full Text] [Related]
32. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. El-Temsah YS; Joner EJ Chemosphere; 2012 Sep; 89(1):76-82. PubMed ID: 22595530 [TBL] [Abstract][Full Text] [Related]
33. Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Baragaño D; Alonso J; Gallego JR; Lobo MC; Gil-Díaz M Chemosphere; 2020 Jan; 238():124624. PubMed ID: 31472353 [TBL] [Abstract][Full Text] [Related]
34. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
35. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. Mokarram-Kashtiban S; Hosseini SM; Tabari Kouchaksaraei M; Younesi H Environ Sci Pollut Res Int; 2019 Apr; 26(11):10776-10789. PubMed ID: 30778927 [TBL] [Abstract][Full Text] [Related]
36. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. Chang MC; Kang HY J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):576-82. PubMed ID: 19337920 [TBL] [Abstract][Full Text] [Related]
37. Study on the enhancement of citric acid chemical leaching of contaminated soil by modified nano zero-valent iron. Zhang S; Zhou L; Tang K; Ren D; Zhang X Environ Geochem Health; 2024 Jun; 46(7):224. PubMed ID: 38849581 [TBL] [Abstract][Full Text] [Related]
38. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Lefevre E; Bossa N; Wiesner MR; Gunsch CK Sci Total Environ; 2016 Sep; 565():889-901. PubMed ID: 26897610 [TBL] [Abstract][Full Text] [Related]
39. Nanoscale zerovalent iron (nZVI) at environmentally relevant concentrations induced multigenerational reproductive toxicity in Caenorhabditis elegans. Yang YF; Chen PJ; Liao VH Chemosphere; 2016 May; 150():615-623. PubMed ID: 26830375 [TBL] [Abstract][Full Text] [Related]
40. Interactions of two novel stabilizing amendments with sunflower plants grown in a contaminated soil. Michálková Z; Martínez-Fernández D; Komárek M Chemosphere; 2017 Nov; 186():374-380. PubMed ID: 28802129 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]