These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25863766)

  • 21. Biogeochemical transformations of mercury in solid waste landfills and pathways for release.
    Lee SW; Lowry GV; Hsu-Kim H
    Environ Sci Process Impacts; 2016 Feb; 18(2):176-89. PubMed ID: 26745831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential contamination of the coastal zone by eroding historic landfills.
    Brand JH; Spencer KL
    Mar Pollut Bull; 2019 Sep; 146():282-291. PubMed ID: 31426158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills.
    Mou Z; Scheutz C; Kjeldsen P
    Waste Manag; 2015 Jan; 35():170-6. PubMed ID: 25453319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Field investigation of the quality of fresh and aged leachates from selected landfills receiving e-waste in an arid climate.
    Kiddee P; Naidu R; Wong MH; Hearn L; Muller JF
    Waste Manag; 2014 Nov; 34(11):2292-304. PubMed ID: 25070222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: case study of Thailand.
    Wangyao K; Towprayoon S; Chiemchaisri C; Gheewala SH; Nopharatana A
    Environ Monit Assess; 2010 May; 164(1-4):249-61. PubMed ID: 19415519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India.
    Ghosh P; Shah G; Chandra R; Sahota S; Kumar H; Vijay VK; Thakur IS
    Bioresour Technol; 2019 Jan; 272():611-615. PubMed ID: 30385029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using observed data to improve estimated methane collection from select U.S. landfills.
    Wang X; Nagpure AS; DeCarolis JF; Barlaz MA
    Environ Sci Technol; 2013 Apr; 47(7):3251-7. PubMed ID: 23469937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decomposition of forest products buried in landfills.
    Wang X; Padgett JM; Powell JS; Barlaz MA
    Waste Manag; 2013 Nov; 33(11):2267-76. PubMed ID: 23942265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing methods to estimate emissions of non-methane organic compounds from landfills.
    Saquing JM; Chanton JP; Yazdani R; Barlaz MA; Scheutz C; Blake DR; Imhoff PT
    Waste Manag; 2014 Nov; 34(11):2260-70. PubMed ID: 25108756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of carbon storage in landfills from the biogenic carbon content of excavated waste samples.
    De la Cruz FB; Chanton JP; Barlaz MA
    Waste Manag; 2013 Oct; 33(10):2001-5. PubMed ID: 23332655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations.
    Tansel B; Surita SC
    Waste Manag; 2014 Nov; 34(11):2271-7. PubMed ID: 25160660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of waste decay rate for a large Finnish landfill by calibrating methane generation models on the basis of methane recovery and emissions.
    Sormunen K; Laurila T; Rintala J
    Waste Manag Res; 2013 Oct; 31(10):979-85. PubMed ID: 23797297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: strong N2O hotspots at the working face.
    Harborth P; Fuss R; Münnich K; Flessa H; Fricke K
    Waste Manag; 2013 Oct; 33(10):2099-107. PubMed ID: 23453435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterisation of excavated fine fraction and waste composition from a Swedish landfill.
    Jani Y; Kaczala F; Marchand C; Hogland M; Kriipsalu M; Hogland W; Kihl A
    Waste Manag Res; 2016 Dec; 34(12):1292-1299. PubMed ID: 27742875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Persistence times of refractory materials in landfills: A review of rate limiting conditions by mass transfer and reaction kinetics.
    Tansel B
    J Environ Manage; 2019 Oct; 247():88-103. PubMed ID: 31234049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wet landfill decomposition rate determination using methane yield results for excavated waste samples.
    Kim H; Townsend TG
    Waste Manag; 2012 Jul; 32(7):1427-33. PubMed ID: 22516100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the final phase of landfill gas generation from long-term observations.
    Tintner J; Kühleitner M; Binner E; Brunner N; Smidt E
    Biodegradation; 2012 Jun; 23(3):407-14. PubMed ID: 22089657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using multivariate regression modeling for sampling and predicting chemical characteristics of mixed waste in old landfills.
    Brandstätter C; Laner D; Prantl R; Fellner J
    Waste Manag; 2014 Dec; 34(12):2537-47. PubMed ID: 25218084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.
    Jambeck J; Weitz K; Solo-Gabriele H; Townsend T; Thorneloe S
    Waste Manag; 2007; 27(8):S21-8. PubMed ID: 17416510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.
    Wolfsberger T; Aldrian A; Sarc R; Hermann R; Höllen D; Budischowsky A; Zöscher A; Ragoßnig A; Pomberger R
    Waste Manag Res; 2015 Nov; 33(11):962-74. PubMed ID: 26347181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.