These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 25864033)
1. Comparative investigation on non-isothermal kinetics for thermo-degradation of lignocellulosic substrate and its chlorinated derivative in atmospheres with CO2 participation. He Y; Ma X Bioresour Technol; 2015; 189():71-80. PubMed ID: 25864033 [TBL] [Abstract][Full Text] [Related]
2. Consequences of poly(vinyl chloride) presence on the thermochemical process of lignocellulosic biomass in CO₂ by thermogravimetric analysis. He Y; Ma X; Zeng G Bioresour Technol; 2015 Feb; 177():346-54. PubMed ID: 25506821 [TBL] [Abstract][Full Text] [Related]
3. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101 [TBL] [Abstract][Full Text] [Related]
4. Non isothermal model free kinetics for pyrolysis of rice straw. Mishra G; Bhaskar T Bioresour Technol; 2014 Oct; 169():614-621. PubMed ID: 25105267 [TBL] [Abstract][Full Text] [Related]
5. Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass. Açıkalın K Bioresour Technol; 2021 Oct; 337():125438. PubMed ID: 34166929 [TBL] [Abstract][Full Text] [Related]
6. TG-MS analysis and kinetic study for thermal decomposition of six representative components of municipal solid waste under steam atmosphere. Zhang J; Chen T; Wu J; Wu J Waste Manag; 2015 Sep; 43():152-61. PubMed ID: 26066574 [TBL] [Abstract][Full Text] [Related]
7. Thermochemical conversion pathways of Kappaphycus alvarezii granules through study of kinetic models. Das P; Mondal D; Maiti S Bioresour Technol; 2017 Jun; 234():233-242. PubMed ID: 28319772 [TBL] [Abstract][Full Text] [Related]
8. Thermogravimetric analyses of combustion of lignocellulosic materials in N2/O2 and CO2/O2 atmospheres. Lai Z; Ma X; Tang Y; Lin H; Chen Y Bioresour Technol; 2012 Mar; 107():444-50. PubMed ID: 22209440 [TBL] [Abstract][Full Text] [Related]
9. Determination of kinetic parameters of Phlomis bovei de Noé using thermogravimetric analysis. Yahiaoui M; Hadoun H; Toumert I; Hassani A Bioresour Technol; 2015 Nov; 196():441-7. PubMed ID: 26276095 [TBL] [Abstract][Full Text] [Related]
10. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. López-González D; Fernandez-Lopez M; Valverde JL; Sanchez-Silva L Bioresour Technol; 2013 Sep; 143():562-74. PubMed ID: 23835261 [TBL] [Abstract][Full Text] [Related]
11. Thermogravimetric and mass-spectrometric analyses of combustion of spent potlining under N Sun G; Zhang G; Liu J; Xie W; Kuo J; Lu X; Buyukada M; Evrendilek F; Sun S Waste Manag; 2019 Mar; 87():237-249. PubMed ID: 31109523 [TBL] [Abstract][Full Text] [Related]
12. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion. Buratti C; Barbanera M; Bartocci P; Fantozzi F Bioresour Technol; 2015 Jun; 186():154-162. PubMed ID: 25817025 [TBL] [Abstract][Full Text] [Related]
13. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Ounas A; Aboulkas A; El Harfi K; Bacaoui A; Yaacoubi A Bioresour Technol; 2011 Dec; 102(24):11234-8. PubMed ID: 22004591 [TBL] [Abstract][Full Text] [Related]
14. Online evolved gas analysis by Thermogravimetric-Mass Spectroscopy for thermal decomposition of biomass and its components under different atmospheres: part I. Lignin. Shen D; Hu J; Xiao R; Zhang H; Li S; Gu S Bioresour Technol; 2013 Feb; 130():449-56. PubMed ID: 23313692 [TBL] [Abstract][Full Text] [Related]
15. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis. Xiang Z; Liang J; Morgan HM; Liu Y; Mao H; Bu Q Bioresour Technol; 2018 Jan; 247():804-811. PubMed ID: 30060416 [TBL] [Abstract][Full Text] [Related]
16. Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Balogun AO; Lasode OA; McDonald AG Bioresour Technol; 2014 Mar; 156():57-62. PubMed ID: 24486938 [TBL] [Abstract][Full Text] [Related]
17. Kinetic studies on the pyrolysis of pinewood. Mishra G; Kumar J; Bhaskar T Bioresour Technol; 2015 Apr; 182():282-288. PubMed ID: 25704102 [TBL] [Abstract][Full Text] [Related]
18. The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models. Janković B Bioresour Technol; 2011 Oct; 102(20):9763-71. PubMed ID: 21852115 [TBL] [Abstract][Full Text] [Related]
19. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials. Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063 [TBL] [Abstract][Full Text] [Related]
20. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere. Zhang J; Chen T; Wu J; Wu J Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]