These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 25864041)

  • 1. Recent advancements in sensing techniques based on functional materials for organophosphate pesticides.
    Kumar P; Kim KH; Deep A
    Biosens Bioelectron; 2015 Aug; 70():469-81. PubMed ID: 25864041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosensors and their applications in detection of organophosphorus pesticides in the environment.
    Hassani S; Momtaz S; Vakhshiteh F; Maghsoudi AS; Ganjali MR; Norouzi P; Abdollahi M
    Arch Toxicol; 2017 Jan; 91(1):109-130. PubMed ID: 27761595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical biosensor technology: application to pesticide detection.
    Palchetti I; Laschi S; Mascini M
    Methods Mol Biol; 2009; 504():115-26. PubMed ID: 19159094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive electrochemical microbial biosensor for p-nitrophenylorganophosphates based on electrode modified with cell surface-displayed organophosphorus hydrolase and ordered mesopore carbons.
    Tang X; Zhang T; Liang B; Han D; Zeng L; Zheng C; Li T; Wei M; Liu A
    Biosens Bioelectron; 2014 Oct; 60():137-42. PubMed ID: 24794405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosensors based on cantilevers.
    Alvarez M; Carrascosa LG; Zinoviev K; Plaza JA; Lechuga LM
    Methods Mol Biol; 2009; 504():51-71. PubMed ID: 19159090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosensor technology for pesticides--a review.
    Verma N; Bhardwaj A
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3093-119. PubMed ID: 25595494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-cost, portable generic biotoxicity assay for environmental monitoring applications.
    Sharma V; Narayanan A; Rengachari T; Temes GC; Chaplen F; Moon UK
    Biosens Bioelectron; 2005 May; 20(11):2218-27. PubMed ID: 15797319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunosensors for detection of pesticide residues.
    Jiang X; Li D; Xu X; Ying Y; Li Y; Ye Z; Wang J
    Biosens Bioelectron; 2008 Jun; 23(11):1577-87. PubMed ID: 18358712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme inhibition-based biosensors for food safety and environmental monitoring.
    Amine A; Mohammadi H; Bourais I; Palleschi G
    Biosens Bioelectron; 2006 Feb; 21(8):1405-23. PubMed ID: 16125923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in pesticide biosensors: current status, challenges, and future perspectives.
    Liu S; Zheng Z; Li X
    Anal Bioanal Chem; 2013 Jan; 405(1):63-90. PubMed ID: 22892800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sonochemically fabricated enzyme microelectrode arrays for the environmental monitoring of pesticides.
    Pritchard J; Law K; Vakurov A; Millner P; Higson SP
    Biosens Bioelectron; 2004 Nov; 20(4):765-72. PubMed ID: 15522591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite.
    Gong J; Wang L; Zhang L
    Biosens Bioelectron; 2009 Mar; 24(7):2285-8. PubMed ID: 19111456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of pesticide residues using an immunodevice based on negative dielectrophoresis.
    Ramón-Azcón J; Kunikata R; Sanchez FJ; Marco MP; Shiku H; Yasukawa T; Matsue T
    Biosens Bioelectron; 2009 Feb; 24(6):1592-7. PubMed ID: 18829293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twenty years research in cholinesterase biosensors: from basic research to practical applications.
    Andreescu S; Marty JL
    Biomol Eng; 2006 Mar; 23(1):1-15. PubMed ID: 16443390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing micro-electrometric techniques for the detection of organophosphate and carbamate residues using cricket cholinesterase.
    Wongta A; Anand P; Aning NAA; Sawarng N; Hongsibsong S
    PLoS One; 2024; 19(7):e0308112. PubMed ID: 39083518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advancements in the detection of organophosphate pesticides: a review.
    Bhattu M; Verma M; Kathuria D
    Anal Methods; 2021 Oct; 13(38):4390-4428. PubMed ID: 34486591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detoxification of organophosphate residues using phosphotriesterase and their evaluation using flow based biosensor.
    Mishra RK; Istamboulie G; Bhand S; Marty JL
    Anal Chim Acta; 2012 Oct; 745():64-9. PubMed ID: 22938607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotubes-based label-free affinity sensors for environmental monitoring.
    Sarkar T; Gao Y; Mulchandani A
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1011-25. PubMed ID: 23653139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow injection chemiluminescence sensor using molecularly imprinted polymers as recognition element for determination of maleic hydrazide.
    Fang Y; Yan S; Ning B; Liu N; Gao Z; Chao F
    Biosens Bioelectron; 2009 Apr; 24(8):2323-7. PubMed ID: 19261458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disposable screen printed electrochemical sensors: tools for environmental monitoring.
    Hayat A; Marty JL
    Sensors (Basel); 2014 Jun; 14(6):10432-53. PubMed ID: 24932865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.