These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25864167)

  • 21. Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments.
    Straub KL; Buchholz-Cleven BE
    Appl Environ Microbiol; 1998 Dec; 64(12):4846-56. PubMed ID: 9835573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of Fe
    Wen S; Hu K; Chen Y; Hu Y
    J Hazard Mater; 2019 Jul; 373():359-366. PubMed ID: 30933858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans.
    Mesa MM; Macías M; Cantero D
    Biotechnol Prog; 2002; 18(4):679-85. PubMed ID: 12153298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans.
    Beller HR; Zhou P; Legler TC; Chakicherla A; Kane S; Letain TE; A O'Day P
    Front Microbiol; 2013; 4():249. PubMed ID: 24065960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effect of pH and temperature on the kinetics of Fe2+ oxidation by Thiobacillus ferrooxidans].
    Moshniakova SA; Karavaiko GI
    Mikrobiologiia; 1979; 48(1):49-52. PubMed ID: 34080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Dependence of the rate of ferrous oxide oxidation by a Thiobacillus ferrooxidans culture on its concentration].
    Kovrov BG; Denisov GV; Sekacheva LG
    Mikrobiologiia; 1978; 47(3):400-2. PubMed ID: 672678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical simulation for electrochemical cultivation of iron oxidizing bacteria.
    Matsumoto N; Yoshinaga H; Ohmura N; Ando A; Saiki H
    Biotechnol Bioeng; 2002 Apr; 78(1):17-23. PubMed ID: 11857276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
    Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F
    Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Examining thiosulfate-driven autotrophic denitrification through respirometry.
    Mora M; Guisasola A; Gamisans X; Gabriel D
    Chemosphere; 2014 Oct; 113():1-8. PubMed ID: 25065782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria.
    Benz M; Brune A; Schink B
    Arch Microbiol; 1998 Feb; 169(2):159-65. PubMed ID: 9446687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria.
    Klueglein N; Zeitvogel F; Stierhof YD; Floetenmeyer M; Konhauser KO; Kappler A; Obst M
    Appl Environ Microbiol; 2014 Feb; 80(3):1051-61. PubMed ID: 24271182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidation of Fe(II)-EDTA by nitrite and by two nitrate-reducing Fe(II)-oxidizing Acidovorax strains.
    Klueglein N; Picardal F; Zedda M; Zwiener C; Kappler A
    Geobiology; 2015 Mar; 13(2):198-207. PubMed ID: 25612223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enrichment and isolation of iron-oxidizing bacteria at neutral pH.
    Emerson D; Floyd MM
    Methods Enzymol; 2005; 397():112-23. PubMed ID: 16260287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study.
    Miot J; Maclellan K; Benzerara K; Boisset N
    Geobiology; 2011 Nov; 9(6):459-70. PubMed ID: 21955835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids.
    Hädrich A; Taillefert M; Akob DM; Cooper RE; Litzba U; Wagner FE; Nietzsche S; Ciobota V; Rösch P; Popp J; Küsel K
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30874727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system.
    Manconi I; Carucci A; Lens P
    Biotechnol Bioeng; 2007 Oct; 98(3):551-60. PubMed ID: 17724757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation.
    Jamieson J; Prommer H; Kaksonen AH; Sun J; Siade AJ; Yusov A; Bostick B
    Environ Sci Technol; 2018 May; 52(10):5771-5781. PubMed ID: 29676145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ferrous iron oxidation and uranium extraction by Thiobacillus ferrooxidans.
    Guay R; Silver M; Torma AE
    Biotechnol Bioeng; 1977 May; 19(5):727-40. PubMed ID: 857953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of Fe3+ ions on Thiobacillus ferrooxidans oxidation of ferrous oxide at various temperatures].
    Kovalenko TV; Karavaĭko GI; Piskunov VP
    Mikrobiologiia; 1982; 51(1):156-60. PubMed ID: 7070305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.