These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25864375)

  • 1. Spatially confined catalysis-enhanced high-temperature carbon dioxide electrolysis.
    Yang L; Xue X; Xie K
    Phys Chem Chem Phys; 2015 May; 17(17):11705-14. PubMed ID: 25864375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst for high-temperature direct steam electrolysis.
    Yang L; Xie K; Xu S; Wu T; Zhou Q; Xie T; Wu Y
    Dalton Trans; 2014 Oct; 43(37):14147-57. PubMed ID: 25134937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis.
    Gan L; Ye L; Tao S; Xie K
    Phys Chem Chem Phys; 2016 Jan; 18(4):3137-43. PubMed ID: 26743799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ growth of Ni(x)Cu(1-x) alloy nanocatalysts on redox-reversible rutile (Nb,Ti)O₄ towards high-temperature carbon dioxide electrolysis.
    Wei H; Xie K; Zhang J; Zhang Y; Wang Y; Qin Y; Cui J; Yan J; Wu Y
    Sci Rep; 2014 Jun; 4():5156. PubMed ID: 24889679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perovskite chromates cathode with exsolved iron nanoparticles for direct high-temperature steam electrolysis.
    Li Y; Wang Y; Doherty W; Xie K; Wu Y
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8553-62. PubMed ID: 23931726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Active and Redox-Stable Ce-Doped LaSrCrFeO-Based Cathode Catalyst for CO2 SOECs.
    Zhang YQ; Li JH; Sun YF; Hua B; Luo JL
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6457-63. PubMed ID: 26901862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient CO
    Ye L; Pan C; Zhang M; Li C; Chen F; Gan L; Xie K
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25350-25357. PubMed ID: 28686008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A composite cathode based on scandium doped titanate with enhanced electrocatalytic activity towards direct carbon dioxide electrolysis.
    Yang L; Xie K; Wu L; Qin Q; Zhang J; Zhang Y; Xie T; Wu Y
    Phys Chem Chem Phys; 2014 Oct; 16(39):21417-28. PubMed ID: 25182301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ formation of oxygen vacancy in perovskite Sr(0.95)Ti(0.8)Nb(0.1)M(0.1)O3 (M = Mn, Cr) toward efficient carbon dioxide electrolysis.
    Zhang J; Xie K; Wei H; Qin Q; Qi W; Yang L; Ruan C; Wu Y
    Sci Rep; 2014 Nov; 4():7082. PubMed ID: 25403738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor.
    Shin TH; Myung JH; Verbraeken M; Kim G; Irvine JT
    Faraday Discuss; 2015; 182():227-39. PubMed ID: 26247663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing CO
    Liu C; Li S; Gao J; Bian L; Hou Y; Wang L; Peng J; Bao J; Song X; An S
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8229-8238. PubMed ID: 33562961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced carbon dioxide electrolysis at redox manipulated interfaces.
    Wang W; Gan L; Lemmon JP; Chen F; Irvine JTS; Xie K
    Nat Commun; 2019 Apr; 10(1):1550. PubMed ID: 30948715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-Reversible Iron Orthovanadate Cathode for Solid Oxide Steam Electrolyzer.
    Gan L; Ye L; Ruan C; Chen S; Xie K
    Adv Sci (Weinh); 2016 Feb; 3(2):1500186. PubMed ID: 27774386
    [No Abstract]   [Full Text] [Related]  

  • 14. Achieving Highly Efficient Carbon Dioxide Electrolysis by
    Yang X; Sun W; Ma M; Xu C; Ren R; Qiao J; Wang Z; Li Z; Zhen S; Sun K
    ACS Appl Mater Interfaces; 2021 May; 13(17):20060-20069. PubMed ID: 33886263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient electrochemical reforming of CH
    Lu J; Zhu C; Pan C; Lin W; Lemmon JP; Chen F; Li C; Xie K
    Sci Adv; 2018 Mar; 4(3):eaar5100. PubMed ID: 29670946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the cathode material for nitrate removal by a paired electrolysis process.
    Reyter D; Bélanger D; Roué L
    J Hazard Mater; 2011 Aug; 192(2):507-13. PubMed ID: 21703761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing CO
    Ye L; Zhang M; Huang P; Guo G; Hong M; Li C; Irvine JT; Xie K
    Nat Commun; 2017 Mar; 8():14785. PubMed ID: 28300066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite fuel electrode La(0.2)Sr(0.8)TiO(3-δ)-Ce(0.8)Sm(0.2)O(2-δ) for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser.
    Li Y; Zhou J; Dong D; Wang Y; Jiang JZ; Xiang H; Xie K
    Phys Chem Chem Phys; 2012 Nov; 14(44):15547-53. PubMed ID: 23073153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Investigation of Reversible Exsolution/Dissolution of CoFe Alloy Nanoparticles in a Co-Doped Sr
    Lv H; Lin L; Zhang X; Song Y; Matsumoto H; Zeng C; Ta N; Liu W; Gao D; Wang G; Bao X
    Adv Mater; 2020 Feb; 32(6):e1906193. PubMed ID: 31894628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.