BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25864376)

  • 1. Molecular dynamics simulation for the reversed power stroke motion of a myosin subfragment-1.
    Masuda T
    Biosystems; 2015 Jun; 132-133():1-5. PubMed ID: 25864376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of a myosin subfragment-1 docking with an actin filament.
    Masuda T
    Biosystems; 2013 Sep; 113(3):144-8. PubMed ID: 23791790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement.
    Muhlrad A; Peyser YM; Nili M; Ajtai K; Reisler E; Burghardt TP
    Biophys J; 2003 Feb; 84(2 Pt 1):1047-56. PubMed ID: 12547786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deterministic mechanism producing the loose coupling phenomenon observed in an actomyosin system.
    Masuda T
    Biosystems; 2009 Feb; 95(2):104-13. PubMed ID: 18793694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal motility in stiffening actin-myosin networks.
    Uhde J; Keller M; Sackmann E; Parmeggiani A; Frey E
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):268101. PubMed ID: 15698023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation model of the conventional kinesin based on the Driven-by-Detachment mechanism.
    Masuda T
    Biosystems; 2009 Aug; 97(2):121-6. PubMed ID: 19464341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of evolved collective motions of atoms in the myosin motor domain upon perturbation of the ATPase pocket.
    Kawakubo T; Okada O; Minami T
    Biophys Chem; 2005 May; 115(1):77-85. PubMed ID: 15848287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of the myosin Va recovery stroke that contributes to unidirectional stepping along actin.
    Shiroguchi K; Chin HF; Hannemann DE; Muneyuki E; De La Cruz EM; Kinosita K
    PLoS Biol; 2011 Apr; 9(4):e1001031. PubMed ID: 21532738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical driving force of actomyosin motility based on the hydration effect.
    Suzuki M; Mogami G; Ohsugi H; Watanabe T; Matubayasi N
    Cytoskeleton (Hoboken); 2017 Dec; 74(12):512-527. PubMed ID: 29087038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol reactivity as a sensor of rotation of the converter in myosin.
    Onishi H; Nitanai Y
    Biochem Biophys Res Commun; 2008 Apr; 369(1):115-23. PubMed ID: 18068118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contractile stress generation by actomyosin gels.
    Carlsson AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051912. PubMed ID: 17279944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative rigor binding of myosin to actin is a function of F-actin structure.
    Orlova A; Egelman EH
    J Mol Biol; 1997 Feb; 265(5):469-74. PubMed ID: 9048941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force generation by recombinant myosin heads trapped between two functionalized surfaces.
    Suda H; Sasaki N; Sasaki YC; Goto K
    Eur Biophys J; 2004 Oct; 33(6):469-76. PubMed ID: 15024525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal dynamics of F-actin and myosin subfragment-1 studied by quasielastic neutron scattering.
    Matsuo T; Arata T; Oda T; Nakajima K; Ohira-Kawamura S; Kikuchi T; Fujiwara S
    Biochem Biophys Res Commun; 2015 Apr; 459(3):493-7. PubMed ID: 25747714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide.
    Holmes KC; Angert I; Kull FJ; Jahn W; Schröder RR
    Nature; 2003 Sep; 425(6956):423-7. PubMed ID: 14508495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A possible mechanism for determining the directionality of myosin molecular motors.
    Masuda T
    Biosystems; 2008 Sep; 93(3):172-80. PubMed ID: 18479805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric dipole theory and thermodynamics of actomyosin molecular motor in muscle contraction.
    Lampinen MJ; Noponen T
    J Theor Biol; 2005 Oct; 236(4):397-421. PubMed ID: 15919094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative regulation of myosin-actin interactions by a continuous flexible chain II: actin-tropomyosin-troponin and regulation by calcium.
    Smith DA; Geeves MA
    Biophys J; 2003 May; 84(5):3168-80. PubMed ID: 12719246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational flexibility of loops of myosin enhances the global bias in the actin-myosin interaction landscape.
    Nie QM; Sasai M; Terada TP
    Phys Chem Chem Phys; 2014 Apr; 16(14):6441-7. PubMed ID: 24513657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unit event of sliding of the chemo-mechanical enzyme composed of myosin and actin with regulatory proteins.
    Oosawa F
    Biochem Biophys Res Commun; 2008 Apr; 369(1):144-8. PubMed ID: 18157940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.