BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25864376)

  • 21. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1.
    Schröder RR; Manstein DJ; Jahn W; Holden H; Rayment I; Holmes KC; Spudich JA
    Nature; 1993 Jul; 364(6433):171-4. PubMed ID: 8321290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural change and nucleotide dissociation of Myosin motor domain: dual go model simulation.
    Takagi F; Kikuchi M
    Biophys J; 2007 Dec; 93(11):3820-7. PubMed ID: 17704146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and dynamics of the force-generating domain of myosin probed by multifrequency electron paramagnetic resonance.
    Nesmelov YE; Agafonov RV; Burr AR; Weber RT; Thomas DD
    Biophys J; 2008 Jul; 95(1):247-56. PubMed ID: 18339764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of three-state docking of myosin S1 with actin in force generation.
    Geeves MA; Conibear PB
    Biophys J; 1995 Apr; 68(4 Suppl):194S-199S; discussion 199S-201S. PubMed ID: 7787067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain.
    Bódis E; Strambini GB; Gonnelli M; Málnási-Csizmadia A; Somogyi B
    Biophys J; 2004 Aug; 87(2):1146-54. PubMed ID: 15298917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A coarse-grained molecular model for actin-myosin simulation.
    Taylor WR; Katsimitsoulia Z
    J Mol Graph Model; 2010 Sep; 29(2):266-79. PubMed ID: 20724184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct measurement for elasticity of myosin head.
    Suda H; Sugimoto M; Chiba M; Uemura C
    Biochem Biophys Res Commun; 1995 Jun; 211(1):219-25. PubMed ID: 7779088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium and cargoes as regulators of myosin 5a activity.
    Sellers JR; Thirumurugan K; Sakamoto T; Hammer JA; Knight PJ
    Biochem Biophys Res Commun; 2008 Apr; 369(1):176-81. PubMed ID: 18060865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.
    Mesentean S; Koppole S; Smith JC; Fischer S
    J Mol Biol; 2007 Mar; 367(2):591-602. PubMed ID: 17275022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A single myosin head can be cross-linked to the N termini of two adjacent actin monomers.
    Bonafé N; Chaussepied P
    Biophys J; 1995 Apr; 68(4 Suppl):35S-43S. PubMed ID: 7787098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Small segmental rearrangements in the myosin head can explain force generation in muscle.
    Díaz Baños FG; Bordas J; Lowy J; Svensson A
    Biophys J; 1996 Aug; 71(2):576-89. PubMed ID: 8842197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myosin-induced volume increase of the hyper-mobile water surrounding actin filaments.
    Suzuki M; Kabir SR; Siddique MS; Nazia US; Miyazaki T; Kodama T
    Biochem Biophys Res Commun; 2004 Sep; 322(1):340-6. PubMed ID: 15313212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular modeling of the myosin-S1(A1) isoform.
    Aydt EM; Wolff G; Morano I
    J Struct Biol; 2007 Jul; 159(1):158-63. PubMed ID: 17498971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. All-atom molecular dynamics simulations of actin-myosin interactions: a comparative study of cardiac α myosin, β myosin, and fast skeletal muscle myosin.
    Li M; Zheng W
    Biochemistry; 2013 Nov; 52(47):8393-405. PubMed ID: 24224850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transmission of force and displacement within the myosin molecule.
    Ohki T; Mikhailenko SV; Morales MF; Onishi H; Mochizuki N
    Biochemistry; 2004 Nov; 43(43):13707-14. PubMed ID: 15504033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and Computational Insights into a Blebbistatin-Bound Myosin•ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke.
    Ewert W; Franz P; Tsiavaliaris G; Preller M
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parking problem and negative cooperativity of binding of myosin subfragment 1 to F-actin.
    Reshetnyak YK; Prudence CN; Segala J; Markin VS; Andreev OA
    Biochem Biophys Res Commun; 2012 Sep; 425(4):746-9. PubMed ID: 22867639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of scallop Myosin s1 in the pre-power stroke state to 2.6 a resolution: flexibility and function in the head.
    Gourinath S; Himmel DM; Brown JH; Reshetnikova L; Szent-Györgyi AG; Cohen C
    Structure; 2003 Dec; 11(12):1621-7. PubMed ID: 14656445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structural basis for the large powerstroke of myosin VI.
    Ménétrey J; Llinas P; Mukherjea M; Sweeney HL; Houdusse A
    Cell; 2007 Oct; 131(2):300-8. PubMed ID: 17956731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stepwise sliding of single actin and Myosin filaments.
    Liu X; Pollack GH
    Biophys J; 2004 Jan; 86(1 Pt 1):353-8. PubMed ID: 14695277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.