These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25864426)

  • 21. The hydrophobicity of a lotus leaf: a nanomechanical and computational approach.
    Balani K; Batista RG; Lahiri D; Agarwal A
    Nanotechnology; 2009 Jul; 20(30):305707. PubMed ID: 19584417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The wetting behavior of aqueous surfactant solutions on wheat (Triticum aestivum) leaf surfaces.
    Zhang C; Zhao X; Lei J; Ma Y; Du F
    Soft Matter; 2017 Jan; 13(2):503-513. PubMed ID: 27934995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on Droplet Impact and Spreading and Deposition Behavior of Harvest Aids on Cotton Leaves.
    Duan L; Fang Z; Han X; Dou Z; Liu Y; Wen M; Hou T; Yang D; Wang C; Zhang G
    Langmuir; 2022 Oct; 38(40):12248-12262. PubMed ID: 36170011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surfactant-induced deposit structures in relation to the biological efficacy of glyphosate on easy- and difficult-to-wet weed species.
    Kraemer T; Hunsche M; Noga G
    Pest Manag Sci; 2009 Aug; 65(8):844-50. PubMed ID: 19360704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of spreading behaviors of Silwet L-77 on dry and wet lotus leaves.
    Tang X; Dong J; Li X
    J Colloid Interface Sci; 2008 Sep; 325(1):223-7. PubMed ID: 18571664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strelitzia reginae leaf as a natural template for anisotropic wetting and superhydrophobicity.
    Mele E; Girardo S; Pisignano D
    Langmuir; 2012 Mar; 28(11):5312-7. PubMed ID: 22401575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wetting Behavior and Maximum Retention of Aqueous Surfactant Solutions on Tea Leaves.
    Zhu F; Cao C; Cao L; Li F; Du F; Huang Q
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of the equilibrium relationship between deposition and wettability behavior on the high-efficiency utilization of pesticides.
    He L; Ding L; Zhang P; Li B; Mu W; Liu F
    Pest Manag Sci; 2021 May; 77(5):2485-2493. PubMed ID: 33442936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wetting and adhesion behavior on apple tree leaf surface by adding different surfactants.
    Gao Y; Lu J; Zhang P; Shi G; Li Y; Zhao J; Liu Z; Yang J; Du F; Fan R
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110602. PubMed ID: 31761521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of surfactants with barley leaf surfaces: time-dependent recovery of contact angles is due to foliar uptake of surfactants.
    Baales J; Zeisler-Diehl VV; Malkowsky Y; Schreiber L
    Planta; 2021 Nov; 255(1):1. PubMed ID: 34837118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of epiphytic micro-organisms on leaf wettability: wetting of the upper leaf surface of Juglans regia and of model surfaces in relation to colonization by micro-organisms.
    Knoll D; Schreiber L
    New Phytol; 1998 Oct; 140(2):271-282. PubMed ID: 33862844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous spreading and evaporation: recent developments.
    Semenov S; Trybala A; Rubio RG; Kovalchuk N; Starov V; Velarde MG
    Adv Colloid Interface Sci; 2014 Apr; 206():382-98. PubMed ID: 24075076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uptake of phosphorus from surfactant solutions by wheat leaves: spreading kinetics, wetted area, and drying time.
    Peirce CA; Priest C; McBeath TM; McLaughlin MJ
    Soft Matter; 2016 Jan; 12(1):209-18. PubMed ID: 26457870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding the wettability of a hairy surface: effect of hair rigidity and topology.
    Pei HW; Liu H; Zhu YL; Lu ZY
    Phys Chem Chem Phys; 2016 Jul; 18(28):18767-75. PubMed ID: 27345379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.
    Lee JB; Derome D; Guyer R; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1299-308. PubMed ID: 26743317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropic Wetting Characteristics of Biomimetic Rice Leaf Surface with Asymmetric Asperities.
    Jang MY; Park JW; Baek SY; Kim TW
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4331-4335. PubMed ID: 31968468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leaf wettability decreases along an extreme altitudinal gradient.
    Aryal B; Neuner G
    Oecologia; 2010 Jan; 162(1):1-9. PubMed ID: 19727830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. COMPUTER SIMULATIONS OF SPRAY RETENTION BY A 3D BARLEY PLANT: EFFECT OF FORMULATION SURFACE TENSION.
    Massinon M; De Cock N; Salah SO; Lebeau F
    Commun Agric Appl Biol Sci; 2015; 80(3):313-21. PubMed ID: 27141729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surfactant-induced enhancement of droplet adhesion in superhydrophobic soybean (
    Hagedorn O; Fleute-Schlachter I; Mainx HG; Zeisler-Diehl V; Koch K
    Beilstein J Nanotechnol; 2017; 8():2345-2356. PubMed ID: 29181291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components.
    Cheng L; Muller SJ; Radke CJ
    Curr Eye Res; 2004 Feb; 28(2):93-108. PubMed ID: 14972715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.