BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25864443)

  • 1. Anticancer activity of galactoxyloglucan polysaccharide-conjugated doxorubicin nanoparticles: Mechanistic insights and interactome analysis.
    Joseph MM; Aravind SR; George SK; Raveendran Pillai K; Mini S; Sreelekha TT
    Eur J Pharm Biopharm; 2015 Jun; 93():183-95. PubMed ID: 25864443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galactoxyloglucan-doxorubicin nanoparticles exerts superior cytotoxic effects on cancer cells-A mechanistic and in silico approach.
    Joseph MM; G A; T K M; T T S
    Int J Biol Macromol; 2016 Nov; 92():20-29. PubMed ID: 27373427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Galactoxyloglucan-modified nanocarriers of doxorubicin for improved tumor-targeted drug delivery with minimal toxicity.
    Joseph MM; Aravind SR; George SK; Pillai KR; Mini S; Sreelekha TT
    J Biomed Nanotechnol; 2014 Nov; 10(11):3253-68. PubMed ID: 26000385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice.
    Zhao X; Chen Q; Li Y; Tang H; Liu W; Yang X
    Eur J Pharm Biopharm; 2015 Jun; 93():27-36. PubMed ID: 25770771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle delivery strategies to target doxorubicin to tumor cells and reduce side effects.
    Wang Y; Wei X; Zhang C; Zhang F; Liang W
    Ther Deliv; 2010 Aug; 1(2):273-87. PubMed ID: 22816133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge-conversional and reduction-sensitive poly(vinyl alcohol) nanogels for enhanced cell uptake and efficient intracellular doxorubicin release.
    Chen W; Achazi K; Schade B; Haag R
    J Control Release; 2015 May; 205():15-24. PubMed ID: 25445693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma.
    Pranatharthiharan S; Patel MD; Malshe VC; Pujari V; Gorakshakar A; Madkaikar M; Ghosh K; Devarajan PV
    Drug Deliv; 2017 Nov; 24(1):20-29. PubMed ID: 28155331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance.
    Wang H; Yin H; Yan F; Sun M; Du L; Peng W; Li Q; Feng Y; Zhou Y
    Oncotarget; 2015 Feb; 6(5):2827-42. PubMed ID: 25605018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model.
    Wong HL; Rauth AM; Bendayan R; Wu XY
    Eur J Pharm Biopharm; 2007 Mar; 65(3):300-8. PubMed ID: 17156986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antitumor activity of galactoxyloglucan-gold nanoparticles against murine ascites and solid carcinoma.
    Joseph MM; Aravind SR; George SK; Pillai KR; Mini S; Sreelekha TT
    Colloids Surf B Biointerfaces; 2014 Apr; 116():219-27. PubMed ID: 24486833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid-functionalized dextran nanosystems to overcome multidrug resistance in cancer: a pilot study.
    Kobayashi E; Iyer AK; Hornicek FJ; Amiji MM; Duan Z
    Clin Orthop Relat Res; 2013 Mar; 471(3):915-25. PubMed ID: 23011844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-encapsulation of Doxorubicin with galactoxyloglucan nanoparticles for intracellular tumor-targeted delivery in murine ascites and solid tumors.
    Joseph MM; Aravind SR; George SK; Pillai RK; Mini S; Sreelekha TT
    Transl Oncol; 2014 Oct; 7(5):525-36. PubMed ID: 25389448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possibilities to increase the effectiveness of doxorubicin in cancer cells killing.
    Hanušová V; Boušová I; Skálová L
    Drug Metab Rev; 2011 Nov; 43(4):540-57. PubMed ID: 21942373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.
    Ye BL; Zheng R; Ruan XJ; Zheng ZH; Cai HJ
    Biochem Biophys Res Commun; 2018 Jan; 495(1):414-420. PubMed ID: 29097204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery.
    Zhang C; Zhao L; Dong Y; Zhang X; Lin J; Chen Z
    Eur J Pharm Biopharm; 2010 Sep; 76(1):10-6. PubMed ID: 20472060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-density lipoprotein peptide-combined DNA nanocomplex as an efficient anticancer drug delivery vehicle.
    Zhang N; Tao J; Hua H; Sun P; Zhao Y
    Eur J Pharm Biopharm; 2015 Aug; 94():20-9. PubMed ID: 25960329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A folate modified pH sensitive targeted polymeric micelle alleviated systemic toxicity of doxorubicin (DOX) in multi-drug resistant tumor bearing mice.
    Li X; Yang X; Lin Z; Wang D; Mei D; He B; Wang X; Wang X; Zhang Q; Gao W
    Eur J Pharm Sci; 2015 Aug; 76():95-101. PubMed ID: 25917524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres.
    Shen Z; Li Y; Kohama K; Oneill B; Bi J
    Pharmacol Res; 2011 Jan; 63(1):51-8. PubMed ID: 21035550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of clickable gelatin-oleic nanoparticles using fattigation-platform for cancer therapy.
    Meghani NM; Amin HH; Park C; Park JB; Cui JH; Cao QR; Lee BJ
    Int J Pharm; 2018 Jul; 545(1-2):101-112. PubMed ID: 29698822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant-polymer nanoparticles: a novel platform for sustained and enhanced cellular delivery of water-soluble molecules.
    Chavanpatil MD; Khdair A; Panyam J
    Pharm Res; 2007 Apr; 24(4):803-10. PubMed ID: 17318416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.