BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

577 related articles for article (PubMed ID: 25864460)

  • 1. Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization.
    Ozuna CV; Iehisa JC; Giménez MJ; Alvarez JB; Sousa C; Barro F
    Plant J; 2015 Jun; 82(5):794-805. PubMed ID: 25864460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes.
    van Herpen TW; Goryunova SV; van der Schoot J; Mitreva M; Salentijn E; Vorst O; Schenk MF; van Veelen PA; Koning F; van Soest LJ; Vosman B; Bosch D; Hamer RJ; Gilissen LJ; Smulders MJ
    BMC Genomics; 2006 Jan; 7():1. PubMed ID: 16403227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Celiac Immunogenic Potential of α-Gliadin Epitope Variants from
    Ruiz-Carnicer Á; Comino I; Segura V; Ozuna CV; Moreno ML; López-Casado MÁ; Torres MI; Barro F; Sousa C
    Nutrients; 2019 Jan; 11(2):. PubMed ID: 30678169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the alpha-gliadin locus: the 33-mer peptide with six overlapping coeliac disease epitopes in Triticum aestivum is derived from a subgroup of Aegilops tauschii.
    Schaart JG; Salentijn EMJ; Goryunova SV; Chidzanga C; Esselink DG; Gosman N; Bentley AR; Gilissen LJWJ; Smulders MJM
    Plant J; 2021 Apr; 106(1):86-94. PubMed ID: 33369792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Celiac disease T-cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation.
    Salentijn EM; Mitea DC; Goryunova SV; van der Meer IM; Padioleau I; Gilissen LJ; Koning F; Smulders MJ
    BMC Genomics; 2012 Jun; 13():277. PubMed ID: 22726570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Characterization and Variation of the Celiac Disease Epitope Domains among α-Gliadin Genes in Aegilops tauschii.
    Li YG; Liang HH; Bai SL; Zhou Y; Sun G; Su YR; Gao AL; Zhang DL; Li SP
    J Agric Food Chem; 2017 Apr; 65(16):3422-3429. PubMed ID: 28391694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins.
    Barro F; Iehisa JC; Giménez MJ; García-Molina MD; Ozuna CV; Comino I; Sousa C; Gil-Humanes J
    Plant Biotechnol J; 2016 Mar; 14(3):986-96. PubMed ID: 26300126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplicon sequencing.
    Salentijn EM; Esselink DG; Goryunova SV; van der Meer IM; Gilissen LJ; Smulders MJ
    BMC Genomics; 2013 Dec; 14():905. PubMed ID: 24354426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and molecular characterization of bread wheat lines with reduced amount of α-type gliadins.
    Camerlengo F; Sestili F; Silvestri M; Colaprico G; Margiotta B; Ruggeri R; Lupi R; Masci S; Lafiandra D
    BMC Plant Biol; 2017 Dec; 17(1):248. PubMed ID: 29258439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.).
    Xie Z; Wang C; Wang K; Wang S; Li X; Zhang Z; Ma W; Yan Y
    Theor Appl Genet; 2010 Nov; 121(7):1239-51. PubMed ID: 20556595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards reducing the immunogenic potential of wheat flour: omega gliadins encoded by the D genome of hexaploid wheat may also harbor epitopes for the serious food allergy WDEIA.
    Altenbach SB; Chang HC; Simon-Buss A; Jang YR; Denery-Papini S; Pineau F; Gu YQ; Huo N; Lim SH; Kang CS; Lee JY
    BMC Plant Biol; 2018 Nov; 18(1):291. PubMed ID: 30463509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and environmental factors affecting the expression of α-gliadin canonical epitopes involved in celiac disease in a wide collection of spelt (Triticum aestivum ssp. spelta) cultivars and landraces.
    Dubois B; Bertin P; Hautier L; Muhovski Y; Escarnot E; Mingeot D
    BMC Plant Biol; 2018 Nov; 18(1):262. PubMed ID: 30382818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid evolution of α-gliadin gene family revealed by analyzing Gli-2 locus regions of wild emmer wheat.
    Huo N; Zhu T; Zhang S; Mohr T; Luo MC; Lee JY; Distelfeld A; Altenbach S; Gu YQ
    Funct Integr Genomics; 2019 Nov; 19(6):993-1005. PubMed ID: 31197605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference.
    Gil-Humanes J; Pistón F; Tollefsen S; Sollid LM; Barro F
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):17023-8. PubMed ID: 20829492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Old and modern wheat (Triticum aestivum L.) cultivars and their potential to elicit celiac disease.
    Pronin D; Börner A; Scherf KA
    Food Chem; 2021 Mar; 339():127952. PubMed ID: 33152854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients.
    Spaenij-Dekking L; Kooy-Winkelaar Y; van Veelen P; Drijfhout JW; Jonker H; van Soest L; Smulders MJ; Bosch D; Gilissen LJ; Koning F
    Gastroenterology; 2005 Sep; 129(3):797-806. PubMed ID: 16143119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetraploid and hexaploid wheat varieties reveal large differences in expression of alpha-gliadins from homoeologous Gli-2 loci.
    Salentijn EM; Goryunova SV; Bas N; van der Meer IM; van den Broeck HC; Bastien T; Gilissen LJ; Smulders MJ
    BMC Genomics; 2009 Jan; 10():48. PubMed ID: 19171027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease.
    van den Broeck HC; de Jong HC; Salentijn EM; Dekking L; Bosch D; Hamer RJ; Gilissen LJ; van der Meer IM; Smulders MJ
    Theor Appl Genet; 2010 Nov; 121(8):1527-39. PubMed ID: 20664999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal T cell responses to gluten peptides are largely heterogeneous: implications for a peptide-based therapy in celiac disease.
    Camarca A; Anderson RP; Mamone G; Fierro O; Facchiano A; Costantini S; Zanzi D; Sidney J; Auricchio S; Sette A; Troncone R; Gianfrani C
    J Immunol; 2009 Apr; 182(7):4158-66. PubMed ID: 19299713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and quantitation of immunogenic epitopes related to celiac disease in historical and modern hard red spring wheat cultivars.
    Malalgoda M; Meinhardt SW; Simsek S
    Food Chem; 2018 Oct; 264():101-107. PubMed ID: 29853353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.