These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Addiction research in a simple animal model: the nematode Caenorhabditis elegans. Schafer WR Neuropharmacology; 2004; 47 Suppl 1():123-31. PubMed ID: 15464131 [TBL] [Abstract][Full Text] [Related]
43. A Conserved GEF for Rho-Family GTPases Acts in an EGF Signaling Pathway to Promote Sleep-like Quiescence in Caenorhabditis elegans. Fry AL; Laboy JT; Huang H; Hart AC; Norman KR Genetics; 2016 Mar; 202(3):1153-66. PubMed ID: 26801183 [TBL] [Abstract][Full Text] [Related]
44. Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal. Cho JY; Sternberg PW Cell; 2014 Jan; 156(1-2):249-60. PubMed ID: 24439380 [TBL] [Abstract][Full Text] [Related]
45. A distributed chemosensory circuit for oxygen preference in C. elegans. Chang AJ; Chronis N; Karow DS; Marletta MA; Bargmann CI PLoS Biol; 2006 Sep; 4(9):e274. PubMed ID: 16903785 [TBL] [Abstract][Full Text] [Related]
46. A circuit for navigation in Caenorhabditis elegans. Gray JM; Hill JJ; Bargmann CI Proc Natl Acad Sci U S A; 2005 Mar; 102(9):3184-91. PubMed ID: 15689400 [TBL] [Abstract][Full Text] [Related]
47. [Molecular genetics on behavioral plasticity in Caenorhabditis elegans: thermotaxis mechanism in C. elegans]. Okumura M; Okochi Y; Mori I Tanpakushitsu Kakusan Koso; 2004 Feb; 49(3 Suppl):444-9. PubMed ID: 14976770 [No Abstract] [Full Text] [Related]
48. Behavioral and genetic characterization of habituation using Caenorhabditis elegans. Giles AC; Rankin CH Neurobiol Learn Mem; 2009 Sep; 92(2):139-46. PubMed ID: 18771741 [TBL] [Abstract][Full Text] [Related]
49. Reversal frequency in Caenorhabditis elegans represents an integrated response to the state of the animal and its environment. Zhao B; Khare P; Feldman L; Dent JA J Neurosci; 2003 Jun; 23(12):5319-28. PubMed ID: 12832557 [TBL] [Abstract][Full Text] [Related]
50. Neuronal, mathematical, and molecular bases of perceptual decision-making in C. elegans. Tanimoto Y; Kimura KD Neurosci Res; 2019 Mar; 140():3-13. PubMed ID: 30389573 [TBL] [Abstract][Full Text] [Related]
51. Behavioral Plasticity in the C. elegans Mechanosensory Circuit. Ardiel EL; Rankin CH J Neurogenet; 2008; 22(3):239-55. PubMed ID: 19012160 [TBL] [Abstract][Full Text] [Related]
52. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Remy JJ Curr Biol; 2010 Oct; 20(20):R877-8. PubMed ID: 20971427 [No Abstract] [Full Text] [Related]
53. Plasticity of pheromone-mediated avoidance behavior in Cheon Y; Hwang H; Kim K J Neurogenet; 2020; 34(3-4):420-426. PubMed ID: 32811242 [No Abstract] [Full Text] [Related]
54. Irrational behavior in C. elegans arises from asymmetric modulatory effects within single sensory neurons. Iwanir S; Ruach R; Itskovits E; Pritz CO; Bokman E; Zaslaver A Nat Commun; 2019 Jul; 10(1):3202. PubMed ID: 31324786 [TBL] [Abstract][Full Text] [Related]
55. Head-tail-head neural wiring underlies gut fat storage in Motomura H; Ioroi M; Murakami K; Kuhara A; Ohta A Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2203121119. PubMed ID: 35914124 [TBL] [Abstract][Full Text] [Related]
56. [Molecular genetics on behavioral plasticity in Caenorhabditis elegans: mechanisms for associative learning]. Ishihara T Tanpakushitsu Kakusan Koso; 2004 Feb; 49(3 Suppl):450-5. PubMed ID: 14976771 [No Abstract] [Full Text] [Related]
57. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. Sanyal S; Wintle RF; Kindt KS; Nuttley WM; Arvan R; Fitzmaurice P; Bigras E; Merz DC; Hébert TE; van der Kooy D; Schafer WR; Culotti JG; Van Tol HH EMBO J; 2004 Jan; 23(2):473-82. PubMed ID: 14739932 [TBL] [Abstract][Full Text] [Related]
58. Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Chao MY; Komatsu H; Fukuto HS; Dionne HM; Hart AC Proc Natl Acad Sci U S A; 2004 Oct; 101(43):15512-7. PubMed ID: 15492222 [TBL] [Abstract][Full Text] [Related]
59. [Molecular neurogenetics of sensory behaviors in the hematode C. elgans]. Mori I; Okumura M; Kuhara A Nihon Shinkei Seishin Yakurigaku Zasshi; 2004 Aug; 24(4):239-41. PubMed ID: 15484826 [TBL] [Abstract][Full Text] [Related]
60. Feedback from network states generates variability in a probabilistic olfactory circuit. Gordus A; Pokala N; Levy S; Flavell SW; Bargmann CI Cell; 2015 Apr; 161(2):215-27. PubMed ID: 25772698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]