These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 25864677)
1. High-throughput live cell imaging and analysis for temporal reaction of G protein-coupled receptor based on split luciferase fragment complementation. Hattori M; Ozawa T Anal Sci; 2015; 31(4):327-30. PubMed ID: 25864677 [TBL] [Abstract][Full Text] [Related]
2. Analysis of temporal patterns of GPCR-β-arrestin interactions using split luciferase-fragment complementation. Hattori M; Tanaka M; Takakura H; Aoki K; Miura K; Anzai T; Ozawa T Mol Biosyst; 2013 May; 9(5):957-64. PubMed ID: 23302795 [TBL] [Abstract][Full Text] [Related]
3. Rapid and high-sensitivity cell-based assays of protein-protein interactions using split click beetle luciferase complementation: an approach to the study of G-protein-coupled receptors. Misawa N; Kafi AK; Hattori M; Miura K; Masuda K; Ozawa T Anal Chem; 2010 Mar; 82(6):2552-60. PubMed ID: 20180537 [TBL] [Abstract][Full Text] [Related]
4. Monitoring β-arrestin recruitment via β-lactamase enzyme fragment complementation: purification of peptide E as a low-affinity ligand for mammalian bombesin receptors. Ikeda Y; Kumagai H; Okazaki H; Fujishiro M; Motozawa Y; Nomura S; Takeda N; Toko H; Takimoto E; Akazawa H; Morita H; Suzuki J; Yamazaki T; Komuro I; Yanagisawa M PLoS One; 2015; 10(6):e0127445. PubMed ID: 26030739 [TBL] [Abstract][Full Text] [Related]
5. Live Cell Bioluminescence Imaging in Temporal Reaction of G Protein-Coupled Receptor for High-Throughput Screening and Analysis. Hattori M; Ozawa T Methods Mol Biol; 2016; 1461():195-202. PubMed ID: 27424906 [TBL] [Abstract][Full Text] [Related]
6. Monitoring G protein-coupled receptor activation using an adenovirus-based β-arrestin bimolecular fluorescence complementation assay. Song YB; Park CO; Jeong JY; Huh WK Anal Biochem; 2014 Mar; 449():32-41. PubMed ID: 24361713 [TBL] [Abstract][Full Text] [Related]
7. A novel luminescence-based β-arrestin recruitment assay for unmodified receptors. Hauge Pedersen M; Pham J; Mancebo H; Inoue A; Asher WB; Javitch JA J Biol Chem; 2021; 296():100503. PubMed ID: 33684444 [TBL] [Abstract][Full Text] [Related]
8. Detection of GPCR/beta-arrestin interactions in live cells using bioluminescence resonance energy transfer technology. Kocan M; Pfleger KD Methods Mol Biol; 2009; 552():305-17. PubMed ID: 19513659 [TBL] [Abstract][Full Text] [Related]
9. Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. Southern C; Cook JM; Neetoo-Isseljee Z; Taylor DL; Kettleborough CA; Merritt A; Bassoni DL; Raab WJ; Quinn E; Wehrman TS; Davenport AP; Brown AJ; Green A; Wigglesworth MJ; Rees S J Biomol Screen; 2013 Jun; 18(5):599-609. PubMed ID: 23396314 [TBL] [Abstract][Full Text] [Related]
10. Visualization and quantitative analysis of G protein-coupled receptor-β-arrestin interaction in single cells and specific organs of living mice using split luciferase complementation. Takakura H; Hattori M; Takeuchi M; Ozawa T ACS Chem Biol; 2012 May; 7(5):901-10. PubMed ID: 22364396 [TBL] [Abstract][Full Text] [Related]
11. New Insights into Arrestin Recruitment to GPCRs. Spillmann M; Thurner L; Romantini N; Zimmermann M; Meger B; Behe M; Waldhoer M; Schertler GFX; Berger P Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32668755 [TBL] [Abstract][Full Text] [Related]
12. A homogeneous enzyme fragment complementation-based beta-arrestin translocation assay for high-throughput screening of G-protein-coupled receptors. Zhao X; Jones A; Olson KR; Peng K; Wehrman T; Park A; Mallari R; Nebalasca D; Young SW; Xiao SH J Biomol Screen; 2008 Sep; 13(8):737-47. PubMed ID: 18660457 [TBL] [Abstract][Full Text] [Related]
13. NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors. Ma X; Leurs R; Vischer HF Methods Mol Biol; 2021; 2268():233-248. PubMed ID: 34085273 [TBL] [Abstract][Full Text] [Related]
14. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins. Bedini A Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788 [TBL] [Abstract][Full Text] [Related]
15. Dissecting the pharmacology of G protein-coupled receptor signaling complexes using bimolecular fluorescence complementation. Kilpatrick LE; Holliday ND Methods Mol Biol; 2012; 897():109-38. PubMed ID: 22674163 [TBL] [Abstract][Full Text] [Related]
17. Cell-based high-throughput screening assay system for monitoring G protein-coupled receptor activation using beta-galactosidase enzyme complementation technology. Yan YX; Boldt-Houle DM; Tillotson BP; Gee MA; D'Eon BJ; Chang XJ; Olesen CE; Palmer MA J Biomol Screen; 2002 Oct; 7(5):451-9. PubMed ID: 14599361 [TBL] [Abstract][Full Text] [Related]
18. Monitoring interactions between G-protein-coupled receptors and beta-arrestins. Pfleger KD; Dalrymple MB; Dromey JR; Eidne KA Biochem Soc Trans; 2007 Aug; 35(Pt 4):764-6. PubMed ID: 17635143 [TBL] [Abstract][Full Text] [Related]
19. Cell-based assays and animal models for GPCR drug screening. Takakura H; Hattori M; Tanaka M; Ozawa T Methods Mol Biol; 2015; 1272():257-70. PubMed ID: 25563190 [TBL] [Abstract][Full Text] [Related]
20. Study of GPCR-protein interactions by BRET. Kocan M; Pfleger KD Methods Mol Biol; 2011; 746():357-71. PubMed ID: 21607868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]