BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25864935)

  • 41. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites.
    Fu S; Guo G; Gong C; Zeng S; Liang H; Luo F; Zhang X; Zhao X; Wei Y; Qian Z
    J Phys Chem B; 2009 Dec; 113(52):16518-25. PubMed ID: 19947637
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds.
    Zanin H; Rosa CM; Eliaz N; May PW; Marciano FR; Lobo AO
    Nanoscale; 2015 Jun; 7(22):10218-32. PubMed ID: 25990927
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL
    J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene Nanoplatelet- and Hydroxyapatite-Doped Supramolecular Electrospun Fibers as Potential Materials for Tissue Engineering and Cell Culture.
    Kostopoulos V; Kotrotsos A; Fouriki K
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30987205
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration.
    Ning L; Malmström H; Ren YF
    J Oral Implantol; 2015 Feb; 41(1):45-9. PubMed ID: 23574526
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Study on the development of Ag-nano-hydroxyapatite/polyamide66 porous scaffolds with surface mineralization].
    Fan J; Chang S; Dong M; Huang D; Li J; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1119-24. PubMed ID: 23469542
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new composite scaffold of bioactive glass nanoparticles/graphene: Synchronous improvements of cytocompatibility and mechanical property.
    Fan Z; Wang J; Liu F; Nie Y; Ren L; Liu B
    Colloids Surf B Biointerfaces; 2016 Sep; 145():438-446. PubMed ID: 27232307
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering.
    Jamalpoor Z; Mirzadeh H; Joghataei MT; Zeini D; Bagheri-Khoulenjani S; Nourani MR
    J Biomed Mater Res A; 2015 May; 103(5):1882-92. PubMed ID: 25195588
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering.
    Depan D; Surya PK; Girase B; Misra RD
    Acta Biomater; 2011 May; 7(5):2163-75. PubMed ID: 21284959
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.
    Menaa F; Abdelghani A; Menaa B
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering.
    Bahrami S; Baheiraei N; Mohseni M; Razavi M; Ghaderi A; Azizi B; Rabiee N; Karimi M
    J Biomater Appl; 2019 Jul; 34(1):74-85. PubMed ID: 30961432
    [No Abstract]   [Full Text] [Related]  

  • 55. [Preparation and characterization of nano-hydroxyapatite/polyurethane composite bio-film].
    Dong Z; Li Y; Zhang L; Zou Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Jun; 26(3):545-9. PubMed ID: 19634670
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.
    Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW
    Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Graphene oxide/carbon nanotube composite hydrogels-versatile materials for microbial fuel cell applications.
    Kumar GG; Hashmi S; Karthikeyan C; GhavamiNejad A; Vatankhah-Varnoosfaderani M; Stadler FJ
    Macromol Rapid Commun; 2014 Nov; 35(21):1861-5. PubMed ID: 25228415
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites.
    Mehrali M; Moghaddam E; Shirazi SF; Baradaran S; Mehrali M; Latibari ST; Metselaar HS; Kadri NA; Zandi K; Osman NA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3947-62. PubMed ID: 24588873
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications.
    Jakus AE; Secor EB; Rutz AL; Jordan SW; Hersam MC; Shah RN
    ACS Nano; 2015; 9(4):4636-48. PubMed ID: 25858670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration.
    Akkouch A; Zhang Z; Rouabhia M
    J Biomed Mater Res A; 2011 Mar; 96(4):693-704. PubMed ID: 21284080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.