These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25865241)

  • 1. Reprint of: Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.
    Zeeb B; Herz E; McClements DJ; Weiss J
    J Colloid Interface Sci; 2015 Jul; 449():13-20. PubMed ID: 25865241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.
    Zeeb B; Herz E; McClements DJ; Weiss J
    J Colloid Interface Sci; 2014 Nov; 433():196-203. PubMed ID: 25129338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability and rheology of emulsions containing sodium caseinate: combined effects of ionic calcium and alcohol.
    Radford SJ; Dickinson E; Golding M
    J Colloid Interface Sci; 2004 Jun; 274(2):673-86. PubMed ID: 15144844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-stabilized nanoemulsions and emulsions: comparison of physicochemical stability, lipid oxidation, and lipase digestibility.
    Lee SJ; Choi SJ; Li Y; Decker EA; McClements DJ
    J Agric Food Chem; 2011 Jan; 59(1):415-27. PubMed ID: 21133433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Curcumin Bioavailability through Nonionic Surfactant/Caseinate Mixed Nanoemulsions.
    Cuomo F; Perugini L; Marconi E; Messia MC; Lopez F
    J Food Sci; 2019 Sep; 84(9):2584-2591. PubMed ID: 31436860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of physicochemical and encapsulation stability of O
    Katsouli M; Giannou V; Tzia C
    Food Funct; 2020 Oct; 11(10):8878-8892. PubMed ID: 32986051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Fucoxanthin Nanoemulsion Stabilized by Natural Emulsifiers: Fucoidan, Sodium Caseinate, and Gum Arabic.
    Oliyaei N; Moosavi-Nasab M; Tanideh N
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of protein concentration and order of addition on thermal stability of beta-lactoglobulin stabilized n-hexadecane oil-in-water emulsions at neutral pH.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2005 Jan; 21(1):134-9. PubMed ID: 15620294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes.
    Surh J; Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification.
    Saberi AH; Fang Y; McClements DJ
    J Colloid Interface Sci; 2013 Dec; 411():105-13. PubMed ID: 24050638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology.
    Karadag A; Yang X; Ozcelik B; Huang Q
    J Agric Food Chem; 2013 Mar; 61(9):2130-9. PubMed ID: 23330985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification.
    Saberi AH; Fang Y; McClements DJ
    J Colloid Interface Sci; 2013 Feb; 391():95-102. PubMed ID: 23116862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation and stability assessment of ergocalciferol loaded oil-in-water nanoemulsions: Insights of emulsifiers effect on stabilization mechanism.
    Shu G; Khalid N; Zhao Y; Neves MA; Kobayashi I; Nakajima M
    Food Res Int; 2016 Dec; 90():320-327. PubMed ID: 29195888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers.
    Bai L; McClements DJ
    J Colloid Interface Sci; 2016 Mar; 466():206-12. PubMed ID: 26724703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term stability of sodium caseinate-stabilized nanoemulsions.
    Yerramilli M; Ghosh S
    J Food Sci Technol; 2017 Jan; 54(1):82-92. PubMed ID: 28242906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of interfacial milk protein complexation to stabilize oil-in-water emulsions against calcium.
    Ye A; Lo J; Singh H
    J Colloid Interface Sci; 2012 Jul; 378(1):184-90. PubMed ID: 22579517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers.
    Shu G; Khalid N; Chen Z; Neves MA; Barrow CJ; Nakajima M
    Food Chem; 2018 Jul; 255():67-74. PubMed ID: 29571499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation and characterization of O/W nanoemulsions encapsulating high concentration of astaxanthin.
    Khalid N; Shu G; Holland BJ; Kobayashi I; Nakajima M; Barrow CJ
    Food Res Int; 2017 Dec; 102():364-371. PubMed ID: 29195960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability.
    Luo X; Zhou Y; Bai L; Liu F; Deng Y; McClements DJ
    J Colloid Interface Sci; 2017 Mar; 490():328-335. PubMed ID: 27914331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.