These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Enhancement of physicochemical and encapsulation stability of O Katsouli M; Giannou V; Tzia C Food Funct; 2020 Oct; 11(10):8878-8892. PubMed ID: 32986051 [TBL] [Abstract][Full Text] [Related]
7. Preparation of Fucoxanthin Nanoemulsion Stabilized by Natural Emulsifiers: Fucoidan, Sodium Caseinate, and Gum Arabic. Oliyaei N; Moosavi-Nasab M; Tanideh N Molecules; 2022 Oct; 27(19):. PubMed ID: 36235250 [TBL] [Abstract][Full Text] [Related]
8. Influence of protein concentration and order of addition on thermal stability of beta-lactoglobulin stabilized n-hexadecane oil-in-water emulsions at neutral pH. Kim HJ; Decker EA; McClements DJ Langmuir; 2005 Jan; 21(1):134-9. PubMed ID: 15620294 [TBL] [Abstract][Full Text] [Related]
9. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes. Surh J; Gu YS; Decker EA; McClements DJ J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866 [TBL] [Abstract][Full Text] [Related]
10. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. Saberi AH; Fang Y; McClements DJ J Colloid Interface Sci; 2013 Dec; 411():105-13. PubMed ID: 24050638 [TBL] [Abstract][Full Text] [Related]
11. Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology. Karadag A; Yang X; Ozcelik B; Huang Q J Agric Food Chem; 2013 Mar; 61(9):2130-9. PubMed ID: 23330985 [TBL] [Abstract][Full Text] [Related]
13. Formulation and stability assessment of ergocalciferol loaded oil-in-water nanoemulsions: Insights of emulsifiers effect on stabilization mechanism. Shu G; Khalid N; Zhao Y; Neves MA; Kobayashi I; Nakajima M Food Res Int; 2016 Dec; 90():320-327. PubMed ID: 29195888 [TBL] [Abstract][Full Text] [Related]
14. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. Bai L; McClements DJ J Colloid Interface Sci; 2016 Mar; 466():206-12. PubMed ID: 26724703 [TBL] [Abstract][Full Text] [Related]
15. Long-term stability of sodium caseinate-stabilized nanoemulsions. Yerramilli M; Ghosh S J Food Sci Technol; 2017 Jan; 54(1):82-92. PubMed ID: 28242906 [TBL] [Abstract][Full Text] [Related]
16. Formation of interfacial milk protein complexation to stabilize oil-in-water emulsions against calcium. Ye A; Lo J; Singh H J Colloid Interface Sci; 2012 Jul; 378(1):184-90. PubMed ID: 22579517 [TBL] [Abstract][Full Text] [Related]
18. Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers. Shu G; Khalid N; Chen Z; Neves MA; Barrow CJ; Nakajima M Food Chem; 2018 Jul; 255():67-74. PubMed ID: 29571499 [TBL] [Abstract][Full Text] [Related]
19. Formulation and characterization of O/W nanoemulsions encapsulating high concentration of astaxanthin. Khalid N; Shu G; Holland BJ; Kobayashi I; Nakajima M; Barrow CJ Food Res Int; 2017 Dec; 102():364-371. PubMed ID: 29195960 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability. Luo X; Zhou Y; Bai L; Liu F; Deng Y; McClements DJ J Colloid Interface Sci; 2017 Mar; 490():328-335. PubMed ID: 27914331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]