These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
970 related articles for article (PubMed ID: 25865670)
1. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis. Silva EN; Silveira JA; Rodrigues CR; Viégas RA Plant Biol (Stuttg); 2015 Sep; 17(5):1023-9. PubMed ID: 25865670 [TBL] [Abstract][Full Text] [Related]
2. The tolerance of Jatropha curcas seedlings to NaCl: an ecophysiological analysis. Díaz-López L; Gimeno V; Lidón V; Simón I; Martínez V; García-Sánchez F Plant Physiol Biochem; 2012 May; 54():34-42. PubMed ID: 22377428 [TBL] [Abstract][Full Text] [Related]
3. Differences in efficient metabolite management and nutrient metabolic regulation between wild and cultivated barley grown at high salinity. Yousfi S; Rabhi M; Hessini K; Abdelly C; Gharsalli M Plant Biol (Stuttg); 2010 Jul; 12(4):650-8. PubMed ID: 20636908 [TBL] [Abstract][Full Text] [Related]
4. Insights into the physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability. Talbi Zribi O; Barhoumi Z; Kouas S; Ghandour M; Slama I; Abdelly C J Plant Physiol; 2015 Sep; 189():1-10. PubMed ID: 26476701 [TBL] [Abstract][Full Text] [Related]
5. Salt intolerance in Arabidopsis: shoot and root sodium toxicity, and inhibition by sodium-plus-potassium overaccumulation. Álvarez-Aragón R; Haro R; Benito B; Rodríguez-Navarro A Planta; 2016 Jan; 243(1):97-114. PubMed ID: 26345991 [TBL] [Abstract][Full Text] [Related]
6. Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress. Singh D; Singh CK; Kumari S; Singh Tomar RS; Karwa S; Singh R; Singh RB; Sarkar SK; Pal M PLoS One; 2017; 12(5):e0177465. PubMed ID: 28542267 [TBL] [Abstract][Full Text] [Related]
7. Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola. Liu J; Gao H; Wang X; Zheng Q; Wang C; Wang X; Wang Q Plant Biol (Stuttg); 2014 Mar; 16(2):440-50. PubMed ID: 24033882 [TBL] [Abstract][Full Text] [Related]
8. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]
9. Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard (Brassica juncea L.). Ranjit SL; Manish P; Penna S Protoplasma; 2016 Jan; 253(1):101-10. PubMed ID: 25786350 [TBL] [Abstract][Full Text] [Related]
10. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. Gadelha CG; Miranda RS; Alencar NLM; Costa JH; Prisco JT; Gomes-Filho E J Plant Physiol; 2017 May; 212():69-79. PubMed ID: 28278442 [TBL] [Abstract][Full Text] [Related]
11. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars. Chakraborty K; Bhaduri D; Meena HN; Kalariya K Plant Physiol Biochem; 2016 Jun; 103():143-53. PubMed ID: 26994338 [TBL] [Abstract][Full Text] [Related]
12. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. Lima Neto MC; Lobo AK; Martins MO; Fontenele AV; Silveira JA J Plant Physiol; 2014 Jan; 171(1):23-30. PubMed ID: 24094996 [TBL] [Abstract][Full Text] [Related]
13. Salt sensitivity in chickpea is determined by sodium toxicity. Khan HA; Siddique KH; Colmer TD Planta; 2016 Sep; 244(3):623-37. PubMed ID: 27114264 [TBL] [Abstract][Full Text] [Related]
14. [Absorption and allocation characteristics of K+, Ca2+, Na+ and Cl- in different organs of Broussonetia papyrifera seedlings under NaCl stress]. Yang F; Ding F; Du TZ Ying Yong Sheng Tai Xue Bao; 2009 Apr; 20(4):767-72. PubMed ID: 19565753 [TBL] [Abstract][Full Text] [Related]
15. Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress. Yıldıztugay E; Sekmen AH; Turkan I; Kucukoduk M Plant Physiol Biochem; 2011 Aug; 49(8):816-24. PubMed ID: 21605980 [TBL] [Abstract][Full Text] [Related]
16. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress. Lei B; Huang Y; Sun J; Xie J; Niu M; Liu Z; Fan M; Bie Z Physiol Plant; 2014 Dec; 152(4):738-48. PubMed ID: 24813633 [TBL] [Abstract][Full Text] [Related]
17. Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity. Akbari M; Mahna N; Ramesh K; Bandehagh A; Mazzuca S Protoplasma; 2018 Sep; 255(5):1349-1362. PubMed ID: 29527645 [TBL] [Abstract][Full Text] [Related]
18. Physico-chemical changes in karkade (Hibiscus sabdariffa L.) seedlings responding to salt stress. Galal A Acta Biol Hung; 2017 Mar; 68(1):73-87. PubMed ID: 28322092 [TBL] [Abstract][Full Text] [Related]
19. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water. Teakle NL; Colmer TD; Pedersen O Plant Cell Environ; 2014 Oct; 37(10):2339-49. PubMed ID: 24393094 [TBL] [Abstract][Full Text] [Related]
20. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]