BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 25866033)

  • 21. Cold acclimation-induced up-regulation of the ribosomal protein L7 gene in the freeze tolerant wood frog, Rana sylvatica.
    Wu S; De Croos JN; Storey KB
    Gene; 2008 Nov; 424(1-2):48-55. PubMed ID: 18706984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights from a vertebrate model organism on the molecular mechanisms of whole-body dehydration tolerance.
    Luu BE; Hawkins LJ; Storey KB
    Mol Cell Biochem; 2021 Jun; 476(6):2381-2392. PubMed ID: 33595794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring.
    Mechkarska M; Meetani M; Michalak P; Vaksman Z; Takada K; Conlon JM
    Comp Biochem Physiol Part D Genomics Proteomics; 2012 Sep; 7(3):285-91. PubMed ID: 22687652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The amphibian globin gene repertoire as revealed by the Xenopus genome.
    Fuchs C; Burmester T; Hankeln T
    Cytogenet Genome Res; 2006; 112(3-4):296-306. PubMed ID: 16484786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of evolutionarily conserved pufferfish, zebrafish, and frog orthologs of GASZ.
    Yan W; Ma L; Zilinski CA; Matzuk MM
    Biol Reprod; 2004 Jun; 70(6):1619-25. PubMed ID: 14766731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Status of RNAs, localized in Xenopus laevis oocytes, in the frogs Rana pipiens and Eleutherodactylus coqui.
    Nath K; Boorech JL; Beckham YM; Burns MM; Elinson RP
    J Exp Zool B Mol Dev Evol; 2005 Jan; 304(1):28-39. PubMed ID: 15515051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative expression analysis of multiple PDK genes in Xenopus laevis during oogenesis, maturation, fertilization, and early embryogenesis.
    Tokmakov AA; Terazawa Y; Ikeda M; Shirouzu M; Fukami Y; Yokoyama S
    Gene Expr Patterns; 2009 Mar; 9(3):158-65. PubMed ID: 19084614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular cloning, expression and functional analysis of interleukin-8 (IL-8) in South African clawed frog (Xenopus laevis).
    Cui X; Han Y; Pan Y; Xu X; Ren W; Zhang S
    Dev Comp Immunol; 2011 Nov; 35(11):1159-65. PubMed ID: 21530580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and characterization of a urea sensitive lactate dehydrogenase from the liver of the African clawed frog, Xenopus laevis.
    Katzenback BA; Dawson NJ; Storey KB
    J Comp Physiol B; 2014 Jul; 184(5):601-11. PubMed ID: 24651940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution.
    Boorse GC; Crespi EJ; Dautzenberg FM; Denver RJ
    Endocrinology; 2005 Nov; 146(11):4851-60. PubMed ID: 16037378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptidomic analysis of skin secretions provides insight into the taxonomic status of the African clawed frogs Xenopus victorianus and Xenopus laevis sudanensis (Pipidae).
    King JD; Mechkarska M; Meetani MA; Conlon JM
    Comp Biochem Physiol Part D Genomics Proteomics; 2013 Sep; 8(3):250-4. PubMed ID: 23896465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A ZZ/ZW-type sex determination in Xenopus laevis.
    Yoshimoto S; Ito M
    FEBS J; 2011 Apr; 278(7):1020-6. PubMed ID: 21281450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the molecular structure, expression and bioactivity of the TNFSF13B (BAFF) gene of the South African clawed frog, Xenopus laevis.
    Yang L; Zhou L; Zong X; Cao X; Ji X; Gu W; Zhang S
    Int Immunopharmacol; 2013 Mar; 15(3):478-87. PubMed ID: 23428910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular and functional characterization of Xenopus laevis N-methyl-d-aspartate receptors.
    Schmidt C; Hollmann M
    Mol Cell Neurosci; 2009 Oct; 42(2):116-27. PubMed ID: 19524674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and expression of XRTN1-A and XRTN1-C in Xenopus laevis.
    Park EC; Shim S; Han JK
    Dev Dyn; 2007 Dec; 236(12):3545-53. PubMed ID: 17969151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of a novel freezing inducible gene, li16, in the wood frog Rana sylvatica.
    McNally JD; Wu SB; Sturgeon CM; Storey KB
    FASEB J; 2002 Jun; 16(8):902-4. PubMed ID: 12039874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and evolution of molecular domains involved in differentiating the cement gland-promoting activity of Otx proteins in Xenopus laevis.
    Mancini P; Castelli M; Vignali R
    Mech Dev; 2013; 130(11-12):628-39. PubMed ID: 24056062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of freeze-responsive proteins, Fr10 and Li16, from freeze-tolerant frogs enhances freezing survival of BmN insect cells.
    Biggar KK; Kotani E; Furusawa T; Storey KB
    FASEB J; 2013 Aug; 27(8):3376-83. PubMed ID: 23657819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular analyses of Xenopus laevis Mesp-related genes.
    Hitachi K; Kondow A; Danno H; Nishimura Y; Okabayashi K; Asashima M
    Integr Zool; 2009 Dec; 4(4):387-94. PubMed ID: 21392310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peroxiredoxin 6 from the clawed frog Xenopus laevis: cDNA cloning, enzyme characterization, and gene expression during development.
    Sharapov MG; Ravin VK
    Biochemistry (Mosc); 2009 Aug; 74(8):898-902. PubMed ID: 19817690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.