These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25866235)

  • 1. Computational Network Model Prediction of Hemodynamic Alterations Due to Arteriolar Rarefaction and Estimation of Skeletal Muscle Perfusion in Peripheral Arterial Disease.
    Heuslein JL; Li X; Murrell KP; Annex BH; Peirce SM; Price RJ
    Microcirculation; 2015 Jul; 22(5):360-9. PubMed ID: 25866235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational network model prediction of hemodynamic alterations due to arteriolar remodeling in interval sprint trained skeletal muscle.
    Binder KW; Murfee WL; Song J; Laughlin MH; Price RJ
    Microcirculation; 2007; 14(3):181-92. PubMed ID: 17454671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired skeletal muscle performance as a consequence of random functional capillary rarefaction can be restored with overload-dependent angiogenesis.
    Tickle PG; Hendrickse PW; Degens H; Egginton S
    J Physiol; 2020 Mar; 598(6):1187-1203. PubMed ID: 32012275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circumferential wall stress as a mechanism for arteriolar rarefaction and proliferation in a network model.
    Price RJ; Skalak TC
    Microvasc Res; 1994 Mar; 47(2):188-202. PubMed ID: 8022319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A constrained constructive optimization model of branching arteriolar networks in rat skeletal muscle.
    Bao Y; Frisbee AC; Frisbee JC; Goldman D
    J Appl Physiol (1985); 2024 Jun; 136(6):1303-1321. PubMed ID: 38601995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular rarefaction and tissue vascular resistance in hypertension.
    Greene AS; Tonellato PJ; Lui J; Lombard JH; Cowley AW
    Am J Physiol; 1989 Jan; 256(1 Pt 2):H126-31. PubMed ID: 2912175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcirculation and arterial hypertension.
    Vicaut E
    Drugs; 1999; 58 Spec No 1():1-10. PubMed ID: 10526952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of N-acetylcysteine on skeletal muscle structure and function in a mouse model of peripheral arterial insufficiency.
    Roseguini BT; Silva LM; Polotow TG; Barros MP; Souccar C; Han SW
    J Vasc Surg; 2015 Mar; 61(3):777-86. PubMed ID: 24388697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance imaging based modeling of microvascular perfusion in patients with peripheral artery disease.
    Gimnich OA; Singh J; Bismuth J; Shah DJ; Brunner G
    J Biomech; 2019 Aug; 93():147-158. PubMed ID: 31331663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic contrast-enhanced ultrasound for assessment of skeletal muscle microcirculation in peripheral arterial disease.
    Amarteifio E; Weber MA; Wormsbecher S; Demirel S; Krakowski-Roosen H; Jöres A; Braun S; Delorme S; Böckler D; Kauczor HU; Krix M
    Invest Radiol; 2011 Aug; 46(8):504-8. PubMed ID: 21487300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A circumferential stress-growth rule predicts arcade arteriole formation in a network model.
    Price RJ; Skalak TC
    Microcirculation; 1995 May; 2(1):41-51. PubMed ID: 8542539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Percolation phenomenon: the effect of capillary network rarefaction.
    Hudetz AG
    Microvasc Res; 1993 Jan; 45(1):1-10. PubMed ID: 8479338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasomotion and blood flow regulation in hamster skeletal muscle microcirculation: A theoretical and experimental study.
    Ursino M; Colantuoni A; Bertuglia S
    Microvasc Res; 1998 Nov; 56(3):233-52. PubMed ID: 9828162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial heterogeneity in skeletal muscle microvascular blood flow distribution is increased in the metabolic syndrome.
    Frisbee JC; Wu F; Goodwill AG; Butcher JT; Beard DA
    Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R975-86. PubMed ID: 21775645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcirculation and arterial hypertension.
    Vicaut E
    Drugs; 1999; 59 Spec No():1-10. PubMed ID: 10548386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared spectroscopy assessment following exercise training in patients with intermittent claudication and in untrained healthy participants.
    Manfredini F; Malagoni AM; Mandini S; Felisatti M; Mascoli F; Basaglia N; Manfredini R; Mikhailidis DP; Zamboni P
    Vasc Endovascular Surg; 2012 May; 46(4):315-24. PubMed ID: 22529160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-port analysis of microcirculation: an extension of windkessel.
    Frasch HF; Kresh JY; Noordergraaf A
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H376-85. PubMed ID: 8769774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiostatin does not contribute to skeletal muscle microvascular rarefaction with low nitric oxide bioavailability.
    Frisbee JC; Samora JB; Basile DP
    Microcirculation; 2007 Feb; 14(2):145-53. PubMed ID: 17365669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower extremity manifestations of peripheral artery disease: the pathophysiologic and functional implications of leg ischemia.
    McDermott MM
    Circ Res; 2015 Apr; 116(9):1540-50. PubMed ID: 25908727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.