These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25866437)

  • 1. A Kinetics and Equilibrium Study of Vanadium Dissolution from Vanadium Oxides and Phosphates in Battery Electrolytes: Possible Impacts on ICD Battery Performance.
    Bock DC; Marschilok AC; Takeuchi KJ; Takeuchi ES
    J Power Sources; 2013 Jun; 231():219-225. PubMed ID: 25866437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver vanadium oxide and silver vanadium phosphorous oxide dissolution kinetics: a mechanistic study with possible impact on future ICD battery lifetimes.
    Bock DC; Takeuchi KJ; Marschilok AC; Takeuchi ES
    Dalton Trans; 2013 Oct; 42(38):13981-9. PubMed ID: 23925733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.
    Bock DC; Takeuchi KJ; Marschilok AC; Takeuchi ES
    Phys Chem Chem Phys; 2015 Jan; 17(3):2034-42. PubMed ID: 25478865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium/silver vanadium oxide batteries for implantable defibrillators.
    Takeuchi ES; Quattrini PJ; Greatbatch W
    Pacing Clin Electrophysiol; 1988 Nov; 11(11 Pt 2):2035-9. PubMed ID: 2463584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver Vanadium Phosphorous Oxide, Ag(2)VO(2)PO(4): Chimie Douce Preparation and Resulting Lithium Cell Electrochemistry.
    Kim YJ; Marschilok AC; Takeuchi KJ; Takeuchi ES
    J Power Sources; 2011 Aug; 196(16):6781-6787. PubMed ID: 21765587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Reduction of Silver Vanadium Phosphorous Oxide, Ag(2)VO(2)PO(4): Silver Metal Deposition and Associated Increase in Electrical Conductivity.
    Marschilok AC; Kozarsky ES; Tanzil K; Zhu S; Takeuchi KJ; Takeuchi ES
    J Power Sources; 2010 Oct; 195(19):6839-6846. PubMed ID: 20657813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver Vanadium Diphosphate Ag
    Takeuchi ES; Lee CY; Chen PJ; Menard MC; Marschilok AC; Takeuchi KJ
    J Solid State Chem; 2013 Apr; 200():232-240. PubMed ID: 25866419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Cathode Lithium Battery Discharge Simulation for Implantable Cardioverter Defibrillators Using a Coupled Electro-Thermal Dynamic Model.
    Doosthosseini M; Ghods H; Talkhoncheh MK; Silberberg JL; Weininger S
    Cardiovasc Eng Technol; 2023 Aug; 14(4):534-543. PubMed ID: 37566310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An interlaced silver vanadium oxide-graphene hybrid with high structural stability for use in lithium ion batteries.
    Qin J; Lv W; Li Z; Li B; Kang F; Yang QH
    Chem Commun (Camb); 2014 Nov; 50(88):13447-50. PubMed ID: 25177755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries.
    Mattelaer F; Geryl K; Rampelberg G; Dendooven J; Detavernier C
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13121-13131. PubMed ID: 28362478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of ultrasonic irradiation to the sol-gel synthesis of silver vanadium oxides.
    Xie J; Cao X; Li J; Zhan H; Xia Y; Zhou Y
    Ultrason Sonochem; 2005 Mar; 12(4):289-93. PubMed ID: 15501712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Safe High-Performance All-Solid-State Lithium-Vanadium Battery with a Freestanding V
    Zhang Y; Lai J; Gong Y; Hu Y; Liu J; Sun C; Wang ZL
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34309-34316. PubMed ID: 27998115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology-dependent vanadium oxide nanostructures grown on Ti foil for Li-ion battery.
    Wei L; Wang Y; Wang Y; Xu M; Zheng G
    J Colloid Interface Sci; 2014 Oct; 432():297-301. PubMed ID: 25105747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the anode surface-electrolyte interphase: investigating a life limiting process of lithium primary batteries.
    Bock DC; Tappero RV; Takeuchi KJ; Marschilok AC; Takeuchi ES
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5429-37. PubMed ID: 25690846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.
    Skyllas-Kazacos M; Cao L; Kazacos M; Kausar N; Mousa A
    ChemSusChem; 2016 Jul; 9(13):1521-43. PubMed ID: 27295523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag
    Fernández de Luis R; Larrea ES; Orive J; Lezama L; Costa CM; Lanceros-Méndez S; Arriortua MI
    RSC Adv; 2019 Dec; 9(72):42439-42449. PubMed ID: 35542870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Self-Formed Nanosheet MoS
    Chang U; Lee JT; Yun JM; Lee B; Lee SW; Joh HI; Eom K; Fuller TF
    ACS Nano; 2019 Feb; 13(2):1490-1498. PubMed ID: 30580512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors.
    Wang G; Lu X; Ling Y; Zhai T; Wang H; Tong Y; Li Y
    ACS Nano; 2012 Nov; 6(11):10296-302. PubMed ID: 23050855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics.
    Xiong C; Aliev AE; Gnade B; Balkus KJ
    ACS Nano; 2008 Feb; 2(2):293-301. PubMed ID: 19206630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cardiac implantable electronic device power source: evolution and revolution.
    Mond HG; Freitag G
    Pacing Clin Electrophysiol; 2014 Dec; 37(12):1728-45. PubMed ID: 25387600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.