BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 25866599)

  • 1. The role of oxidative stress and autophagy in atherosclerosis.
    Perrotta I; Aquila S
    Oxid Med Cell Longev; 2015; 2015():130315. PubMed ID: 25866599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative Stress Triggers Defective Autophagy in Endothelial Cells: Role in Atherothrombosis Development.
    Carresi C; Mollace R; Macrì R; Scicchitano M; Bosco F; Scarano F; Coppoletta AR; Guarnieri L; Ruga S; Zito MC; Nucera S; Gliozzi M; Musolino V; Maiuolo J; Palma E; Mollace V
    Antioxidants (Basel); 2021 Mar; 10(3):. PubMed ID: 33807637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol crystallization in human atherosclerosis is triggered in smooth muscle cells during the transition from fatty streak to fibroatheroma.
    Ho-Tin-Noé B; Vo S; Bayles R; Ferrière S; Ladjal H; Toumi S; Deschildre C; Ollivier V; Michel JB
    J Pathol; 2017 Apr; 241(5):671-682. PubMed ID: 28039859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pitavastatin inhibits lysophosphatidic acid-induced proliferation and monocyte chemoattractant protein-1 expression in aortic smooth muscle cells by suppressing Rac-1-mediated reactive oxygen species generation.
    Kaneyuki U; Ueda S; Yamagishi S; Kato S; Fujimura T; Shibata R; Hayashida A; Yoshimura J; Kojiro M; Oshima K; Okuda S
    Vascul Pharmacol; 2007 Apr; 46(4):286-92. PubMed ID: 17178255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta.
    Ding Z; Liu S; Wang X; Deng X; Fan Y; Sun C; Wang Y; Mehta JL
    Antioxid Redox Signal; 2015 Mar; 22(9):760-71. PubMed ID: 25490141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagic regulation of smooth muscle cell biology.
    Salabei JK; Hill BG
    Redox Biol; 2015; 4():97-103. PubMed ID: 25544597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells.
    She ZG; Chang Y; Pang HB; Han W; Chen HZ; Smith JW; Stallcup WB
    Arterioscler Thromb Vasc Biol; 2016 Jan; 36(1):49-59. PubMed ID: 26543095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive Oxygen Species Generation and Atherosclerosis.
    Nowak WN; Deng J; Ruan XZ; Xu Q
    Arterioscler Thromb Vasc Biol; 2017 May; 37(5):e41-e52. PubMed ID: 28446473
    [No Abstract]   [Full Text] [Related]  

  • 9. Vascular oxidant stress and inflammation in hyperhomocysteinemia.
    Papatheodorou L; Weiss N
    Antioxid Redox Signal; 2007 Nov; 9(11):1941-58. PubMed ID: 17822365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology.
    Manea A
    Cell Tissue Res; 2010 Dec; 342(3):325-39. PubMed ID: 21052718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monocyte recruitment and foam cell formation in atherosclerosis.
    Bobryshev YV
    Micron; 2006; 37(3):208-22. PubMed ID: 16360317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms Underlying Atheroma Induction: The Roles of Mechanotransduction, Vascular Wall Cells, and Blood Cells.
    Novikova OA; Laktionov PP; Karpenko AA
    Ann Vasc Surg; 2018 Nov; 53():224-233. PubMed ID: 30012457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular oxidative stress, nitric oxide and atherosclerosis.
    Li H; Horke S; Förstermann U
    Atherosclerosis; 2014 Nov; 237(1):208-19. PubMed ID: 25244505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of extensively oxidized low-density lipoprotein on mitochondrial function and reactive oxygen species in porcine aortic endothelial cells.
    Roy Chowdhury SK; Sangle GV; Xie X; Stelmack GL; Halayko AJ; Shen GX
    Am J Physiol Endocrinol Metab; 2010 Jan; 298(1):E89-98. PubMed ID: 19843872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smooth muscle cell phenotypic switch: implications for foam cell formation.
    Chaabane C; Coen M; Bochaton-Piallat ML
    Curr Opin Lipidol; 2014 Oct; 25(5):374-9. PubMed ID: 25110900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortistatin inhibits migration and proliferation of human vascular smooth muscle cells and decreases neointimal formation on carotid artery ligation.
    Duran-Prado M; Morell M; Delgado-Maroto V; Castaño JP; Aneiros-Fernandez J; de Lecea L; Culler MD; Hernandez-Cortes P; O'Valle F; Delgado M
    Circ Res; 2013 May; 112(11):1444-55. PubMed ID: 23595952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation.
    Allahverdian S; Pannu PS; Francis GA
    Cardiovasc Res; 2012 Jul; 95(2):165-72. PubMed ID: 22345306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional proteomics reveal the effect of Salvia miltiorrhiza aqueous extract against vascular atherosclerotic lesions.
    Hung YC; Wang PW; Pan TL
    Biochim Biophys Acta; 2010 Jun; 1804(6):1310-21. PubMed ID: 20170756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseases.
    Koga J; Aikawa M
    Vascul Pharmacol; 2012 Aug; 57(1):24-8. PubMed ID: 22402259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox signaling in hypertension.
    Paravicini TM; Touyz RM
    Cardiovasc Res; 2006 Jul; 71(2):247-58. PubMed ID: 16765337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.