These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 25866681)

  • 1. In vitro studies of neuronal networks and synaptic plasticity in invertebrates and in mammals using multielectrode arrays.
    Massobrio P; Tessadori J; Chiappalone M; Ghirardi M
    Neural Plast; 2015; 2015():196195. PubMed ID: 25866681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helix neuronal ensembles with controlled cell type composition and placement develop functional polysynaptic circuits on Micro-Electrode Arrays.
    Massobrio P; Tedesco M; Giachello C; Ghirardi M; Fiumara F; Martinoia S
    Neurosci Lett; 2009 Dec; 467(2):121-6. PubMed ID: 19822187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multielectrode arrays with elastomeric microstructured overlays for extracellular recordings from patterned neurons.
    Claverol-Tinturé E; Ghirardi M; Fiumara F; Rosell X; Cabestany J
    J Neural Eng; 2005 Jun; 2(2):L1-7. PubMed ID: 15928406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays.
    Li Y; Zhou W; Li X; Zeng S; Liu M; Luo Q
    Biosens Bioelectron; 2007 Jun; 22(12):2976-82. PubMed ID: 17240134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow-Wave Recordings From Micro-Sized Neural Clusters Using Multiwell Type Microelectrode Arrays.
    Joo S; Nam Y
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):403-410. PubMed ID: 29993399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional monitoring of spiking networks in acute brain slices.
    Egert U; Heck D; Aertsen A
    Exp Brain Res; 2002 Jan; 142(2):268-74. PubMed ID: 11807580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating brain functional evolution and plasticity using microelectrode array technology.
    Napoli A; Obeid I
    Brain Res Bull; 2015 Oct; 119(Pt B):127-35. PubMed ID: 26476356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development.
    Chiappalone M; Bove M; Vato A; Tedesco M; Martinoia S
    Brain Res; 2006 Jun; 1093(1):41-53. PubMed ID: 16712817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multielectrode Arrays.
    Burley R; Harvey JRM
    Methods Mol Biol; 2021; 2188():109-132. PubMed ID: 33119849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording.
    Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD
    J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Scale, High-Resolution Microelectrode Arrays for Interrogation of Neurons and Networks.
    Obien MEJ; Frey U
    Adv Neurobiol; 2019; 22():83-123. PubMed ID: 31073933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molluscan neurons in culture: shedding light on synapse formation and plasticity.
    Schmold N; Syed NI
    J Mol Histol; 2012 Aug; 43(4):383-99. PubMed ID: 22538479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Studying the mechanisms of genomic and synaptic plasticity in neuronal cultures with microelectrode arrays].
    Mineeva OA; Burtsev MS; Anokhin KV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2012; 62(3):261-9. PubMed ID: 22891571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro formation and activity-dependent plasticity of synapses between Helix neurons involved in the neural control of feeding and withdrawal behaviors.
    Fiumara F; Leitinger G; Milanese C; Montarolo PG; Ghirardi M
    Neuroscience; 2005; 134(4):1133-51. PubMed ID: 16054762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Operant reward learning in Aplysia: neuronal correlates and mechanisms.
    Brembs B; Lorenzetti FD; Reyes FD; Baxter DA; Byrne JH
    Science; 2002 May; 296(5573):1706-9. PubMed ID: 12040200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic positioning and sensing microelectrode array (APSMEA) for multi-site electrophysiological recordings.
    Pan L; Xiang G; Huang L; Yu Z; Cheng J; Xing W; Zhou Y
    J Neurosci Methods; 2008 May; 170(1):123-9. PubMed ID: 18295341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic plasticity and the neurobiology of learning and memory.
    Benfenati F
    Acta Biomed; 2007; 78 Suppl 1():58-66. PubMed ID: 17465325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration.
    Hofmann F; Bading H
    J Physiol Paris; 2006; 99(2-3):125-32. PubMed ID: 16442786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.