BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25866779)

  • 1. The construction of common and specific significance subnetworks of Alzheimer's disease from multiple brain regions.
    Kong W; Mou X; Zhang N; Zeng W; Li S; Yang Y
    Biomed Res Int; 2015; 2015():394260. PubMed ID: 25866779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting and analyzing differentially activated pathways in brain regions of Alzheimer's disease patients.
    Liu ZP; Wang Y; Zhang XS; Xia W; Chen L
    Mol Biosyst; 2011 May; 7(5):1441-52. PubMed ID: 21336338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concerted perturbation observed in a hub network in Alzheimer's disease.
    Liang D; Han G; Feng X; Sun J; Duan Y; Lei H
    PLoS One; 2012; 7(7):e40498. PubMed ID: 22815752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal networks in Alzheimer's disease.
    He Y; Chen Z; Gong G; Evans A
    Neuroscientist; 2009 Aug; 15(4):333-50. PubMed ID: 19458383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural networks in Alzheimer's disease.
    Reid AT; Evans AC
    Eur Neuropsychopharmacol; 2013 Jan; 23(1):63-77. PubMed ID: 23294972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted quantitative analysis of synaptic proteins in Alzheimer's disease brain.
    Chang RY; Etheridge N; Dodd PR; Nouwens AS
    Neurochem Int; 2014 Sep; 75():66-75. PubMed ID: 24893329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regions with abundant neurofibrillary pathology in human brain exhibit a selective reduction in levels of binding-competent tau and accumulation of abnormal tau-isoforms (A68 proteins).
    Bramblett GT; Trojanowski JQ; Lee VM
    Lab Invest; 1992 Feb; 66(2):212-22. PubMed ID: 1735956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anosognosia in Alzheimer disease: Disconnection between memory and self-related brain networks.
    Perrotin A; Desgranges B; Landeau B; Mézenge F; La Joie R; Egret S; Pélerin A; de la Sayette V; Eustache F; Chételat G
    Ann Neurol; 2015 Sep; 78(3):477-86. PubMed ID: 26085009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and in vitro models.
    Martiskainen H; Viswanathan J; Nykänen NP; Kurki M; Helisalmi S; Natunen T; Sarajärvi T; Kurkinen KM; Pursiheimo JP; Rauramaa T; Alafuzoff I; Jääskeläinen JE; Leinonen V; Soininen H; Haapasalo A; Huttunen HJ; Hiltunen M
    Neurobiol Aging; 2015 Feb; 36(2):1221.e15-28. PubMed ID: 25281018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox proteomics identification of oxidatively modified proteins in Alzheimer's disease brain and in vivo and in vitro models of AD centered around Abeta(1-42).
    Sultana R; Perluigi M; Butterfield DA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Mar; 833(1):3-11. PubMed ID: 16236561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trafficking of Alzheimer's disease-related membrane proteins and its participation in disease pathogenesis.
    Suzuki T; Araki Y; Yamamoto T; Nakaya T
    J Biochem; 2006 Jun; 139(6):949-55. PubMed ID: 16788045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pentraxins and Alzheimer's disease: at the interface between biomarkers and pharmacological targets.
    Osera C; Pascale A; Amadio M; Venturini L; Govoni S; Ricevuti G
    Ageing Res Rev; 2012 Apr; 11(2):189-98. PubMed ID: 22186030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decisive role of Reelin signaling during early stages of Alzheimer's disease.
    Krstic D; Pfister S; Notter T; Knuesel I
    Neuroscience; 2013 Aug; 246():108-16. PubMed ID: 23632168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down syndrome and Alzheimer's disease.
    Greber S; Lubec G; Cairns N; Fountoulakis M
    Electrophoresis; 1999; 20(4-5):928-34. PubMed ID: 10344268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions.
    Puthiyedth N; Riveros C; Berretta R; Moscato P
    PLoS One; 2016; 11(4):e0152342. PubMed ID: 27050411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of cortical gene expression in mouse models of Alzheimer's disease.
    Wu ZL; Ciallella JR; Flood DG; O'Kane TM; Bozyczko-Coyne D; Savage MJ
    Neurobiol Aging; 2006 Mar; 27(3):377-86. PubMed ID: 15927307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronizability of EEG-based functional networks in early Alzheimer's disease.
    Tahaei MS; Jalili M; Knyazeva MG
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):636-41. PubMed ID: 22695360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hippocampal network alterations in Alzheimer's disease and Down syndrome: from structure to therapy.
    Sanchez MM; Moghadam S; Naik P; Martin KJ; Salehi A
    J Alzheimers Dis; 2011; 26 Suppl 3():29-47. PubMed ID: 21971449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging, cortical injury and Alzheimer's disease-like pathology in the guinea pig brain.
    Bates K; Vink R; Martins R; Harvey A
    Neurobiol Aging; 2014 Jun; 35(6):1345-51. PubMed ID: 24360504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.