These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25866849)

  • 1. Orbital change manipulation metal-insulator transition temperature in W-doped VO2.
    He X; Zeng Y; Xu X; Gu C; Chen F; Wu B; Wang C; Xing H; Chen X; Chu J
    Phys Chem Chem Phys; 2015 May; 17(17):11638-46. PubMed ID: 25866849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orbital electronic occupation effect on metal-insulator transition in Ti
    Huang K; Meng Y; Xu X; Chen P; Lu A; Li H; Wu B; Wang C; Chen X
    J Phys Condens Matter; 2017 Sep; 29(35):355402. PubMed ID: 28580903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating Behaviors from Heavy Tungsten Doping on Interband Electronic Transition and Orbital Structure Variation of Vanadium Dioxide Films.
    Zhou J; Xie M; Cui A; Zhou B; Jiang K; Shang L; Hu Z; Chu J
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30548-30557. PubMed ID: 30105904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depressed transition temperature of W(x)V(1-x)O2: mechanistic insights from the X-ray absorption fine structure (XAFS) spectroscopy.
    Wu Y; Fan L; Huang W; Chen S; Chen S; Chen F; Zou C; Wu Z
    Phys Chem Chem Phys; 2014 Sep; 16(33):17705-14. PubMed ID: 25031088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2.
    Zhang J; He H; Xie Y; Pan B
    J Chem Phys; 2013 Mar; 138(11):114705. PubMed ID: 23534651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of the temperature-dependent M
    Miao L; Peng Y; Wang D; Liang J; Hu C; Nishibori E; Sun L; Fisher CAJ; Tanemura S
    Phys Chem Chem Phys; 2020 Apr; 22(15):7984-7994. PubMed ID: 32236282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacancy-Driven Robust Metallicity of Structurally Pinned Monoclinic Epitaxial VO
    Moatti A; Sachan R; Gupta S; Narayan J
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3547-3554. PubMed ID: 30590009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of the VO
    Boontan A; Barimah EK; Steenson P; Jose G
    ACS Appl Mater Interfaces; 2023 Nov; 15(44):51606-51616. PubMed ID: 37875389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals.
    Paik T; Hong SH; Gaulding EA; Caglayan H; Gordon TR; Engheta N; Kagan CR; Murray CB
    ACS Nano; 2014 Jan; 8(1):797-806. PubMed ID: 24377298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition.
    Yang M; Yang Y; Hong B; Wang L; Hu K; Dong Y; Xu H; Huang H; Zhao J; Chen H; Song L; Ju H; Zhu J; Bao J; Li X; Gu Y; Yang T; Gao X; Luo Z; Gao C
    Sci Rep; 2016 Mar; 6():23119. PubMed ID: 26975328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature.
    Zhou J; Gao Y; Liu X; Chen Z; Dai L; Cao C; Luo H; Kanahira M; Sun C; Yan L
    Phys Chem Chem Phys; 2013 May; 15(20):7505-11. PubMed ID: 23579557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boron-tuning transition temperature of vanadium dioxide from rutile to monoclinic phase.
    Zhang JJ; He HY; Xie Y; Pan BC
    J Chem Phys; 2014 Nov; 141(19):194707. PubMed ID: 25416905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct electronic structure of the electrolyte gate-induced conducting phase in vanadium dioxide revealed by high-energy photoelectron spectroscopy.
    Karel J; ViolBarbosa CE; Kiss J; Jeong J; Aetukuri N; Samant MG; Kozina X; Ikenaga E; Fecher GH; Felser C; Parkin SS
    ACS Nano; 2014 Jun; 8(6):5784-9. PubMed ID: 24847770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly infrared sensitive VO
    Bhuyan PD; Gupta SK; Kumar A; Sonvane Y; Gajjar PN
    Phys Chem Chem Phys; 2018 Apr; 20(16):11109-11115. PubMed ID: 29620776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic and electronic structures of charge-doping VO
    Chen L; Cui Y; Luo H; Gao Y
    RSC Adv; 2020 May; 10(32):18543-18552. PubMed ID: 35518301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the hysteretic thermal properties of W-doped and undoped nanocrystalline powders of VO
    Gomez-Heredia CL; Ramirez-Rincon JA; Bhardwaj D; Rajasekar P; Tadeo IJ; Cervantes-Lopez JL; Ordonez-Miranda J; Ares O; Umarji AM; Drevillon J; Joulain K; Ezzahri Y; Alvarado-Gil JJ
    Sci Rep; 2019 Oct; 9(1):14687. PubMed ID: 31604979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti(4+)) Doping.
    Wu Y; Fan L; Liu Q; Chen S; Huang W; Chen F; Liao G; Zou C; Wu Z
    Sci Rep; 2015 May; 5():9328. PubMed ID: 25950809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influences of W Content on the Phase Transformation Properties and the Associated Stress Change in Thin Film Substrate Combinations Studied by Fabrication and Characterization of Thin Film V
    Wang X; Rogalla D; Ludwig A
    ACS Comb Sci; 2018 Apr; 20(4):229-236. PubMed ID: 29505229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant reduction of the phase transition temperature for beryllium doped VO2.
    Zhang J; He H; Xie Y; Pan B
    Phys Chem Chem Phys; 2013 Apr; 15(13):4687-90. PubMed ID: 23423531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-insulator transition in V(1-x)W(x)O2: structural and electronic origin.
    Si C; Xu W; Wang H; Zhou J; Ablat A; Zhang L; Cheng J; Pan Z; Fan L; Zou C; Wu Z
    Phys Chem Chem Phys; 2012 Nov; 14(43):15021-8. PubMed ID: 23034581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.