These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 25866856)

  • 1. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.
    Brooker RW; Bennett AE; Cong WF; Daniell TJ; George TS; Hallett PD; Hawes C; Iannetta PP; Jones HG; Karley AJ; Li L; McKenzie BM; Pakeman RJ; Paterson E; Schöb C; Shen J; Squire G; Watson CA; Zhang C; Zhang F; Zhang J; White PJ
    New Phytol; 2015 Apr; 206(1):107-117. PubMed ID: 25866856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid transgenerational adaptation in response to intercropping reduces competition.
    Stefan L; Engbersen N; Schöb C
    Elife; 2022 Sep; 11():. PubMed ID: 36097813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syndromes of production in intercropping impact yield gains.
    Li C; Hoffland E; Kuyper TW; Yu Y; Zhang C; Li H; Zhang F; van der Werf W
    Nat Plants; 2020 Jun; 6(6):653-660. PubMed ID: 32483328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercropping enhances soil carbon and nitrogen.
    Cong WF; Hoffland E; Li L; Six J; Sun JH; Bao XG; Zhang FS; Van Der Werf W
    Glob Chang Biol; 2015 Apr; 21(4):1715-26. PubMed ID: 25216023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. European plant science: a field of opportunities.
    European Plant Science Organization
    J Exp Bot; 2005 Jul; 56(417):1699-709. PubMed ID: 15939733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].
    Zhang FY; Wu PT; Zhao XN; Cheng XF
    Ying Yong Sheng Tai Xue Bao; 2012 May; 23(5):1400-6. PubMed ID: 22919855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems.
    Li Q; Chen J; Wu L; Luo X; Li N; Arafat Y; Lin S; Lin W
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29470429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefits and Risks of Intercropping for Crop Resilience and Pest Management.
    Huss CP; Holmes KD; Blubaugh CK
    J Econ Entomol; 2022 Oct; 115(5):1350-1362. PubMed ID: 35452091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research advances in iron and zinc transfer from soil to plant in intercropping systems].
    Xia HY; Xue YF; Meng WW; Yu LM; Liu LY; Zhang Z
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):1263-70. PubMed ID: 26259472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crop-weed relationships are context-dependent and cannot fully explain the positive effects of intercropping on yield.
    Stefan L; Engbersen N; Schöb C
    Ecol Appl; 2021 Jun; 31(4):e02311. PubMed ID: 33630392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases.
    Chadfield VGA; Hartley SE; Redeker KR
    New Phytol; 2022 Sep; 235(6):2393-2405. PubMed ID: 35678712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant Functional Traits: Soil and Ecosystem Services.
    Faucon MP; Houben D; Lambers H
    Trends Plant Sci; 2017 May; 22(5):385-394. PubMed ID: 28209328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crop Rotation and Intercropping Strategies for Weed Management.
    Liebman M; Dyck E
    Ecol Appl; 1993 Feb; 3(1):92-122. PubMed ID: 27759234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effects of agrochemicals and ecosystem services on crop yield across Europe.
    Gagic V; Kleijn D; Báldi A; Boros G; Jørgensen HB; Elek Z; Garratt MPD; de Groot GA; Hedlund K; Kovács-Hostyánszki A; Marini L; Martin E; Pevere I; Potts SG; Redlich S; Senapathi D; Steffan-Dewenter I; Świtek S; Smith HG; Takács V; Tryjanowski P; van der Putten WH; van Gils S; Bommarco R
    Ecol Lett; 2017 Nov; 20(11):1427-1436. PubMed ID: 28901046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Land Use, Yield and Quality Changes of Minor Field Crops: Is There Superseded Potential to Be Reinvented in Northern Europe?
    Peltonen-Sainio P; Jauhiainen L; Lehtonen H
    PLoS One; 2016; 11(11):e0166403. PubMed ID: 27870865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review.
    Xue Y; Xia H; Christie P; Zhang Z; Li L; Tang C
    Ann Bot; 2016 Mar; 117(3):363-77. PubMed ID: 26749590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diseases in intercropping systems.
    Boudreau MA
    Annu Rev Phytopathol; 2013; 51():499-519. PubMed ID: 23725470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant Breeding for Intercropping in Temperate Field Crop Systems: A Review.
    Moore VM; Schlautman B; Fei SZ; Roberts LM; Wolfe M; Ryan MR; Wells S; Lorenz AJ
    Front Plant Sci; 2022; 13():843065. PubMed ID: 35432391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Resource competition in maize/soybean intercropping system].
    Lü Y; Wu PT; Chen XL; Wang YB; Zhao XN
    Ying Yong Sheng Tai Xue Bao; 2014 Jan; 25(1):139-46. PubMed ID: 24765853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Main interspecific competition and land productivity of fruit-crop intercropping in Loess Region of West Shauxi].
    Yun L; Bi HX; Tian XL; Cui ZW; Zhou HZ; Gao LB; Liu LX
    Ying Yong Sheng Tai Xue Bao; 2011 May; 22(5):1225-32. PubMed ID: 21812299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.