BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 25866914)

  • 1. Methods for characterizing the co-development of biofilm and habitat heterogeneity.
    Li X; Song JL; Culotti A; Zhang W; Chopp DL; Lu N; Packman AI
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25866914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells.
    Song JL; Au KH; Huynh KT; Packman AI
    Biotechnol Bioeng; 2014 Mar; 111(3):597-607. PubMed ID: 24038055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions.
    Zhang W; Sileika TS; Chen C; Liu Y; Lee J; Packman AI
    Biotechnol Bioeng; 2011 Nov; 108(11):2571-82. PubMed ID: 21656713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of biofilm structure and total interaction energy on Escherichia coli retention by Pseudomonas aeruginosa biofilm.
    Wu MY; Sendamangalam V; Xue Z; Seo Y
    Biofouling; 2012; 28(10):1119-28. PubMed ID: 23075008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multichannel Microfluidic Platform for Temporal-Spatial Investigation of Niche Roles of Pseudomonas aeruginosa and Escherichia coli within a Dual-Species Biofilm.
    Cheah H; Bae S
    Appl Environ Microbiol; 2023 Jul; 89(7):e0065123. PubMed ID: 37382537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of Pseudomonas aeruginosa in predominant biofilm or planktonic forms of existence in mixed culture with Escherichia coli in vitro.
    Kuznetsova MV; Maslennikova IL; Karpunina TI; Nesterova LY; Demakov VA
    Can J Microbiol; 2013 Sep; 59(9):604-10. PubMed ID: 24011343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium.
    Culotti A; Packman AI
    PLoS One; 2014; 9(9):e107186. PubMed ID: 25198725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow environment and matrix structure interact to determine spatial competition in
    Nadell CD; Ricaurte D; Yan J; Drescher K; Bassler BL
    Elife; 2017 Jan; 6():. PubMed ID: 28084994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Determinants of the Thickened Matrix in a Dual-Species Pseudomonas aeruginosa and Enterococcus faecalis Biofilm.
    Lee K; Lee KM; Kim D; Yoon SS
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ.
    Sandt C; Smith-Palmer T; Pink J; Brennan L; Pink D
    J Appl Microbiol; 2007 Nov; 103(5):1808-20. PubMed ID: 17953591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enteric Gram-negative bacilli suppress Candida biofilms on Foley urinary catheters.
    Samaranayake YH; Bandara HM; Cheung BP; Yau JY; Yeung SK; Samaranayake LP
    APMIS; 2014 Jan; 122(1):47-58. PubMed ID: 23656511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic wound model for studying the behaviors of Pseudomonas aeruginosa in polymicrobial biofilms.
    Wright E; Neethirajan S; Weng X
    Biotechnol Bioeng; 2015 Nov; 112(11):2351-9. PubMed ID: 25994926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Sessile-Droplet Habitats for Controllable Cultivation of Bacterial Biofilm.
    Jin Z; Nie M; Hu R; Zhao T; Xu J; Chen D; Yun J; Ma LZ; Du W
    Small; 2018 May; 14(22):e1800658. PubMed ID: 29717806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypothesis for the role of nutrient starvation in biofilm detachment.
    Hunt SM; Werner EM; Huang B; Hamilton MA; Stewart PS
    Appl Environ Microbiol; 2004 Dec; 70(12):7418-25. PubMed ID: 15574944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy.
    Pamp SJ; Sternberg C; Tolker-Nielsen T
    Cytometry A; 2009 Feb; 75(2):90-103. PubMed ID: 19051241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fluid flow conditions on interactions between species in biofilms.
    Zhang W; Sileika T; Packman AI
    FEMS Microbiol Ecol; 2013 May; 84(2):344-54. PubMed ID: 23278485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic gradient mixer-flow chamber as a new tool to study biofilm development under defined solute gradients.
    Zhang Y; Li C; Wu Y; Zhang Y; Zhou Z; Cao B
    Biotechnol Bioeng; 2019 Jan; 116(1):54-64. PubMed ID: 30320445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling growth and quorum sensing in biofilms grown in microfluidic chambers.
    Janakiraman V; Englert D; Jayaraman A; Baskaran H
    Ann Biomed Eng; 2009 Jun; 37(6):1206-16. PubMed ID: 19291402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic effects on bacterial biofilm development in a microfluidic environment.
    Kim J; Kim HS; Han S; Lee JY; Oh JE; Chung S; Park HD
    Lab Chip; 2013 May; 13(10):1846-9. PubMed ID: 23576069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of change in biofilm architecture by nutrient concentration using a multichannel microdevice flow system.
    Sanchez Z; Tani A; Suzuki N; Kariyama R; Kumon H; Kimbara K
    J Biosci Bioeng; 2013 Mar; 115(3):326-31. PubMed ID: 23085416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.