These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25867053)

  • 1. Energetics and Solvation Effects at the Photoanode/Catalyst Interface: Ohmic Contact versus Schottky Barrier.
    Ping Y; Goddard WA; Galli GA
    J Am Chem Soc; 2015 Apr; 137(16):5264-7. PubMed ID: 25867053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte.
    Spurgeon JM; Velazquez JM; McDowell MT
    Phys Chem Chem Phys; 2014 Feb; 16(8):3623-31. PubMed ID: 24435160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst.
    Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L
    ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Manipulation of IrO
    Sun W; Zhou Z; Zaman WQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41855-41862. PubMed ID: 29148711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvation effects on the band edge positions of photocatalysts from first principles.
    Ping Y; Sundararaman R; Goddard WA
    Phys Chem Chem Phys; 2015 Nov; 17(45):30499-509. PubMed ID: 26513300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.
    Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W
    ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface Engineering and its Effect on WO
    Liu Y; Wygant BR; Mabayoje O; Lin J; Kawashima K; Kim JH; Li W; Li J; Mullins CB
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12639-12650. PubMed ID: 29608854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting.
    Pihosh Y; Turkevych I; Mawatari K; Asai T; Hisatomi T; Uemura J; Tosa M; Shimamura K; Kubota J; Domen K; Kitamori T
    Small; 2014 Sep; 10(18):3692-9. PubMed ID: 24863862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting.
    Jun SE; Kim YH; Kim J; Cheon WS; Choi S; Yang J; Park H; Lee H; Park SH; Kwon KC; Moon J; Kim SH; Jang HW
    Nat Commun; 2023 Feb; 14(1):609. PubMed ID: 36739416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold-polyoxometalate particles.
    Solarska R; Bienkowski K; Zoladek S; Majcher A; Stefaniuk T; Kulesza PJ; Augustynski J
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14196-200. PubMed ID: 25332175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Spin Coating Method To Deposit Iridium-Based Catalysts onto Silicon for Water Oxidation Photoanodes.
    Ben-Naim M; Palm DW; Strickler AL; Nielander AC; Sanchez J; King LA; Higgins DC; Jaramillo TF
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5901-5908. PubMed ID: 31971770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of molybdenum doping on the structural, optical and electronic properties of WO
    Kalanur SS; Seo H
    J Colloid Interface Sci; 2018 Jan; 509():440-447. PubMed ID: 28923741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Optocatalytic Model for Semiconductor-Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts.
    Trotochaud L; Mills TJ; Boettcher SW
    J Phys Chem Lett; 2013 Mar; 4(6):931-5. PubMed ID: 26291358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmented Z scheme blueprint for efficient solar water splitting system using quaternary chalcogenide absorber material.
    Sarswat PK; Bhattacharyya D; Free ML; Misra M
    Phys Chem Chem Phys; 2016 Feb; 18(5):3788-803. PubMed ID: 26762553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning.
    Suyatin DB; Jain V; Nebol'sin VA; Trägårdh J; Messing ME; Wagner JB; Persson O; Timm R; Mikkelsen A; Maximov I; Samuelson L; Pettersson H
    Nat Commun; 2014; 5():3221. PubMed ID: 24488034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-Principles Study of the Band Diagrams and Schottky-Type Barrier Heights of Aqueous Ta
    Watanabe E; Ushiyama H; Yamashita K
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9559-9566. PubMed ID: 28251847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Electrocatalyst Activity and Ion Permeability on Water-Splitting Photoanodes.
    Lin F; Bachman BF; Boettcher SW
    J Phys Chem Lett; 2015 Jul; 6(13):2427-33. PubMed ID: 26266713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation.
    Pastore M; De Angelis F
    J Am Chem Soc; 2015 May; 137(17):5798-809. PubMed ID: 25866864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.