BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25867060)

  • 1. Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease.
    Ge C; Zhao G; Li Y; Li H; Zhao X; Pannone G; Bufo P; Santoro A; Sanguedolce F; Tortorella S; Mattoni M; Papagerakis S; Keller ET; Franceschi RT
    Oncogene; 2016 Jan; 35(3):366-76. PubMed ID: 25867060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis.
    Baniwal SK; Khalid O; Gabet Y; Shah RR; Purcell DJ; Mav D; Kohn-Gabet AE; Shi Y; Coetzee GA; Frenkel B
    Mol Cancer; 2010 Sep; 9():258. PubMed ID: 20863401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2.
    Colden M; Dar AA; Saini S; Dahiya PV; Shahryari V; Yamamura S; Tanaka Y; Stein G; Dahiya R; Majid S
    Cell Death Dis; 2017 Jan; 8(1):e2572. PubMed ID: 28125091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines.
    Zayzafoon M; Abdulkadir SA; McDonald JM
    J Biol Chem; 2004 Jan; 279(5):3662-70. PubMed ID: 14602722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions.
    Akech J; Wixted JJ; Bedard K; van der Deen M; Hussain S; Guise TA; van Wijnen AJ; Stein JL; Languino LR; Altieri DC; Pratap J; Keller E; Stein GS; Lian JB
    Oncogene; 2010 Feb; 29(6):811-21. PubMed ID: 19915614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RUNX2 overexpression and PTEN haploinsufficiency cooperate to promote CXCR7 expression and cellular trafficking, AKT hyperactivation and prostate tumorigenesis.
    Bai Y; Yang Y; Yan Y; Zhong J; Blee AM; Pan Y; Ma T; Karnes RJ; Jimenez R; Xu W; Huang H
    Theranostics; 2019; 9(12):3459-3475. PubMed ID: 31281490
    [No Abstract]   [Full Text] [Related]  

  • 7. Reciprocal Control of Osteogenic and Adipogenic Differentiation by ERK/MAP Kinase Phosphorylation of Runx2 and PPARγ Transcription Factors.
    Ge C; Cawthorn WP; Li Y; Zhao G; Macdougald OA; Franceschi RT
    J Cell Physiol; 2016 Mar; 231(3):587-96. PubMed ID: 26206105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric Oxide Up-Regulates RUNX2 in LNCaP Prostate Tumours: Implications for Tumour Growth In Vitro and In Vivo.
    Nesbitt H; Browne G; O'Donovan KM; Byrne NM; Worthington J; McKeown SR; McKenna DJ
    J Cell Physiol; 2016 Feb; 231(2):473-82. PubMed ID: 26189652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer.
    Ding G; Fang J; Tong S; Qu L; Jiang H; Ding Q; Liu J
    Prostate; 2015 Jun; 75(9):957-68. PubMed ID: 25728945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the IL-11 Gene in Metastatic Cells Is Supported by Runx2-Smad and Runx2-cJun Complexes Induced by TGFβ1.
    Zhang X; Wu H; Dobson JR; Browne G; Hong D; Akech J; Languino LR; Stein GS; Lian JB
    J Cell Biochem; 2015 Sep; 116(9):2098-108. PubMed ID: 25808168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis.
    Saini S; Majid S; Yamamura S; Tabatabai L; Suh SO; Shahryari V; Chen Y; Deng G; Tanaka Y; Dahiya R
    Clin Cancer Res; 2011 Aug; 17(16):5287-98. PubMed ID: 21159887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional repression of RUNX2 is associated with aggressive clinicopathological outcomes, whereas nuclear location of the protein is related to metastasis in prostate cancer.
    Yun SJ; Yoon HY; Bae SC; Lee OJ; Choi YH; Moon SK; Kim IY; Kim WJ
    Prostate Cancer Prostatic Dis; 2012 Dec; 15(4):369-73. PubMed ID: 22890388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance.
    Monet M; Lehen'kyi V; Gackiere F; Firlej V; Vandenberghe M; Roudbaraki M; Gkika D; Pourtier A; Bidaux G; Slomianny C; Delcourt P; Rassendren F; Bergerat JP; Ceraline J; Cabon F; Humez S; Prevarskaya N
    Cancer Res; 2010 Feb; 70(3):1225-35. PubMed ID: 20103638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CCR2 expression correlates with prostate cancer progression.
    Lu Y; Cai Z; Xiao G; Liu Y; Keller ET; Yao Z; Zhang J
    J Cell Biochem; 2007 Jun; 101(3):676-85. PubMed ID: 17216598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of metastasis-associated genes in prostate cancer by genetic profiling of human prostate cancer cell lines.
    Trojan L; Schaaf A; Steidler A; Haak M; Thalmann G; Knoll T; Gretz N; Alken P; Michel MS
    Anticancer Res; 2005; 25(1A):183-91. PubMed ID: 15816537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone.
    Liang W; Wang F; Chen Q; Dai J; Escara-Wilke J; Keller ET; Zimmermann J; Hong N; Lu Y; Zhang J
    J Cancer Res Clin Oncol; 2019 Aug; 145(8):1999-2012. PubMed ID: 31172267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of androgen-independent prostate cancer cell aggressiveness by FTY720: validating Runx2 as a potential antimetastatic drug screening platform.
    Chua CW; Chiu YT; Yuen HF; Chan KW; Man K; Wang X; Ling MT; Wong YC
    Clin Cancer Res; 2009 Jul; 15(13):4322-35. PubMed ID: 19509141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periostin: a promising target of therapeutical intervention for prostate cancer.
    Sun C; Zhao X; Xu K; Gong J; Liu W; Ding W; Gou Y; Xia G; Ding Q
    J Transl Med; 2011 Jun; 9():99. PubMed ID: 21714934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Down-regulation of protein kinase, DNA-activated, catalytic polypeptide attenuates tumor progression and is an independent prognostic predictor of survival in prostate cancer.
    Zhang X; Wang Y; Ning Y
    Urol Oncol; 2017 Mar; 35(3):111.e15-111.e23. PubMed ID: 27856181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disabled homolog 2 is required for migration and invasion of prostate cancer cells.
    Xie Y; Zhang Y; Jiang L; Zhang M; Chen Z; Liu D; Huang Q
    Front Med; 2015 Sep; 9(3):312-21. PubMed ID: 26143155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.