These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25867102)

  • 1. Recyclability of bottom ash mixed with dredged soils according to the transportation distance and mixing ratio through the estimation of CO2 emissions.
    Noh S; Son Y; Yoon T; Bong T
    J Environ Manage; 2015 Jun; 156():244-51. PubMed ID: 25867102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the efficacy of dredged materials from Lake Panasoffkee, Florida: implication to environment and agriculture. Part 1: Soil and environmental quality aspect.
    Sigua GC; Holtkamp ML; Coleman SW
    Environ Sci Pollut Res Int; 2004; 11(5):321-6. PubMed ID: 15506635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and chemical properties of composite materials made of dredged sediments in a fly-ash based geopolymer.
    Lirer S; Liguori B; Capasso I; Flora A; Caputo D
    J Environ Manage; 2017 Apr; 191():1-7. PubMed ID: 28082249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the efficacy of dredged materials from Lake Panasoffkee, Florida: implication to environment and agriculture. Part 2: pasture establishment and forage productivity.
    Sigua GC; Holtkamp ML; Coleman SW
    Environ Sci Pollut Res Int; 2004; 11(6):394-9. PubMed ID: 15603529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the use of fly ash as a binder on the mechanical behaviour of treated dredged sediments.
    Silitonga E; Levacher D; Mezazigh S
    Environ Technol; 2009 Jul; 30(8):799-807. PubMed ID: 19705663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The suitability evaluation of dredged soil from reservoirs as embankment material.
    Park J; Son Y; Noh S; Bong T
    J Environ Manage; 2016 Dec; 183(Pt 3):443-452. PubMed ID: 27612617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.
    Park SB; Jang YI; Lee J; Lee BJ
    J Hazard Mater; 2009 Jul; 166(1):348-55. PubMed ID: 19124198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction demolition wastes, Waelz slag and MSWI bottom ash: a comparative technical analysis as material for road construction.
    Vegas I; Ibañez JA; San José JT; Urzelai A
    Waste Manag; 2008; 28(3):565-74. PubMed ID: 17451930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.
    García Arenas C; Marrero M; Leiva C; Solís-Guzmán J; Vilches Arenas LF
    Waste Manag; 2011 Aug; 31(8):1783-9. PubMed ID: 21511456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of marine sediments as a pavement base material.
    Dubois V; Abriak NE; Zentar R; Ballivy G
    Waste Manag; 2009 Feb; 29(2):774-82. PubMed ID: 18640020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of MRF residue as alternative fuel in cement production.
    Fyffe JR; Breckel AC; Townsend AK; Webber ME
    Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.
    Birgisdóttir H; Bhander G; Hauschild MZ; Christensen TH
    Waste Manag; 2007; 27(8):S75-84. PubMed ID: 17416511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of coal-fired bottom ash to fuel and construction materials.
    Koca H; Aksoy DO; Ucar R; Koca S
    Environ Technol; 2017 Jul; 38(13-14):1673-1678. PubMed ID: 27976992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential CO
    Jamora JB; Gudia SEL; Go AW; Giduquio MB; Loretero ME
    Waste Manag; 2020 Feb; 103():137-145. PubMed ID: 31874417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers.
    Arenas C; Leiva C; Vilches LF; Cifuentes H
    Waste Manag; 2013 Nov; 33(11):2316-21. PubMed ID: 23916843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sediments and sediment-derived soils in Illinois: pedological and agronomic assessment.
    Darmody RG; Marlin JC
    Environ Monit Assess; 2002 Jul; 77(2):209-27. PubMed ID: 12180657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The recycling of MSW incinerator bottom ash by sintering.
    Wang KS; Tsai CC; Lin KL; Chiang KY
    Waste Manag Res; 2003 Aug; 21(4):318-29. PubMed ID: 14531518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpectedly higher soil organic carbon accumulation in the evapotranspiration cover of a coal bottom ash mixed landfill.
    Kim GW; Khan MI; Kim PJ; Gwon HS
    J Environ Manage; 2020 Aug; 268():110659. PubMed ID: 32510429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of green house gas emissions from Koteshwar hydropower reservoir, India.
    Kumar A; Sharma MP
    Environ Monit Assess; 2017 May; 189(5):240. PubMed ID: 28451962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of environmental effects of the use of stabilized dredged material from New York/New Jersey Harbor, USA, for construction of roadway embankments.
    Douglas WS; Maher A; Jafari F
    Integr Environ Assess Manag; 2005 Nov; 1(4):355-64. PubMed ID: 16639902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.