BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 25867848)

  • 1. Rapid reverse genetic screening using CRISPR in zebrafish.
    Shah AN; Davey CF; Whitebirch AC; Miller AC; Moens CB
    Nat Methods; 2015 Jun; 12(6):535-40. PubMed ID: 25867848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish.
    Ota S; Hisano Y; Ikawa Y; Kawahara A
    Genes Cells; 2014 Jul; 19(7):555-64. PubMed ID: 24848337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A comparison of the knockout efficiencies of two codon-optimized Cas9 coding sequences in zebrafish embryos].
    Zhang FH; Wang HP; Huang SY; Xiong F; Zhu ZY; Sun Y
    Yi Chuan; 2016 Feb; 38(2):144-54. PubMed ID: 26907778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish.
    Prykhozhij SV; Steele SL; Razaghi B; Berman JN
    Dis Model Mech; 2017 Jun; 10(6):811-822. PubMed ID: 28280001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-Directed Gene Editing for the Generation of Loss-of-Function Mutants in High-Throughput Zebrafish F
    Shankaran SS; Dahlem TJ; Bisgrove BW; Yost HJ; Tristani-Firouzi M
    Curr Protoc Mol Biol; 2017 Jul; 119():31.9.1-31.9.22. PubMed ID: 28678442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System.
    Yin L; Jao LE; Chen W
    Methods Mol Biol; 2015; 1332():205-17. PubMed ID: 26285757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish.
    Wu RS; Lam II; Clay H; Duong DN; Deo RC; Coughlin SR
    Dev Cell; 2018 Jul; 46(1):112-125.e4. PubMed ID: 29974860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio).
    Uusi-Mäkelä MIE; Barker HR; Bäuerlein CA; Häkkinen T; Nykter M; Rämet M
    PLoS One; 2018; 13(4):e0196238. PubMed ID: 29684067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome editing reveals reproductive and developmental dependencies on specific types of vitellogenin in zebrafish (Danio rerio).
    Yilmaz O; Patinote A; Nguyen T; Com E; Pineau C; Bobe J
    Mol Reprod Dev; 2019 Sep; 86(9):1168-1188. PubMed ID: 31380595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Production and Identification of CRISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio.
    Sorlien EL; Witucki MA; Ogas J
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30222157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Reverse Genetic Screening Using CRISPR in Zebrafish.
    Shah AN; Davey CF; Whitebirch AC; Miller AC; Moens CB
    Zebrafish; 2016 Apr; 13(2):152-3. PubMed ID: 26153617
    [No Abstract]   [Full Text] [Related]  

  • 13. Analysis of novel domain-specific mutations in the zebrafish
    Turner AN; Andersen RS; Bookout IE; Brashear LN; Davis JC; Gahan DM; Davis JC; Gotham JP; Hijaz BA; Kaushik AS; Mcgill JB; Miller VL; Moseley ZP; Nowell CL; Patel RK; Rodgers MC; Patel RK; Shihab YA; Walker AP; Glover SR; Foster SD; Challa AK
    J Genet; 2018 Dec; 97(5):1315-1325. PubMed ID: 30555080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knockout of zebrafish interleukin 7 receptor (IL7R) by the CRISPR/Cas9 system delays retinal neurodevelopment.
    Cai S; Chen Y; Shang Y; Cui J; Li Z; Li Y
    Cell Death Dis; 2018 Feb; 9(3):273. PubMed ID: 29449560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zebrafish Embryonic Slow Muscle Is a Rapid System for Genetic Analysis of Sarcomere Organization by CRISPR/Cas9, but Not NgAgo.
    Cai M; Si Y; Zhang J; Tian Z; Du S
    Mar Biotechnol (NY); 2018 Apr; 20(2):168-181. PubMed ID: 29374849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating Stable Knockout Zebrafish Lines by Deleting Large Chromosomal Fragments Using Multiple gRNAs.
    Kim BH; Zhang G
    G3 (Bethesda); 2020 Mar; 10(3):1029-1037. PubMed ID: 31915253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Generation of Pigment Free, Immobile Zebrafish Embryos and Larvae in Any Genetic Background Using CRISPR-Cas9 dgRNPs.
    Davis AE; Castranova D; Weinstein BM
    Zebrafish; 2021 Aug; 18(4):235-242. PubMed ID: 34077687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish.
    Auer TO; Duroure K; Concordet JP; Del Bene F
    Nat Protoc; 2014 Dec; 9(12):2823-40. PubMed ID: 25393779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders.
    Shigeta M; Sakane Y; Iida M; Suzuki M; Kashiwagi K; Kashiwagi A; Fujii S; Yamamoto T; Suzuki KT
    Genes Cells; 2016 Jul; 21(7):755-71. PubMed ID: 27219625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Guide to Computational Tools and Design Strategies for Genome Editing Experiments in Zebrafish Using CRISPR/Cas9.
    Prykhozhij SV; Rajan V; Berman JN
    Zebrafish; 2016 Feb; 13(1):70-3. PubMed ID: 26683213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.