BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25867902)

  • 1. A dynamic view of ATP-coupled functioning cycle of Hsp90 N-terminal domain.
    Zhang H; Zhou C; Chen W; Xu Y; Shi Y; Wen Y; Zhang N
    Sci Rep; 2015 Apr; 5():9542. PubMed ID: 25867902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.
    Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J
    J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90.
    Li J; Sun L; Xu C; Yu F; Zhou H; Zhao Y; Zhang J; Cai J; Mao C; Tang L; Xu Y; He J
    Acta Biochim Biophys Sin (Shanghai); 2012 Apr; 44(4):300-6. PubMed ID: 22318716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains.
    Prodromou C; Panaretou B; Chohan S; Siligardi G; O'Brien R; Ladbury JE; Roe SM; Piper PW; Pearl LH
    EMBO J; 2000 Aug; 19(16):4383-92. PubMed ID: 10944121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hsp90 structure and function studied by NMR spectroscopy.
    Didenko T; Duarte AM; Karagöz GE; Rüdiger SG
    Biochim Biophys Acta; 2012 Mar; 1823(3):636-47. PubMed ID: 22155720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational Cycling within the Closed State of Grp94, an Hsp90-Family Chaperone.
    Huang B; Friedman LJ; Sun M; Gelles J; Street TO
    J Mol Biol; 2019 Aug; 431(17):3312-3323. PubMed ID: 31202885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle.
    Richter K; Reinstein J; Buchner J
    J Biol Chem; 2002 Nov; 277(47):44905-10. PubMed ID: 12235160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two closed ATP- and ADP-dependent conformations in yeast Hsp90 chaperone detected by Mn(II) EPR spectroscopic techniques.
    Giannoulis A; Feintuch A; Barak Y; Mazal H; Albeck S; Unger T; Yang F; Su XC; Goldfarb D
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):395-404. PubMed ID: 31862713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation.
    Grenert JP; Sullivan WP; Fadden P; Haystead TA; Clark J; Mimnaugh E; Krutzsch H; Ochel HJ; Schulte TW; Sausville E; Neckers LM; Toft DO
    J Biol Chem; 1997 Sep; 272(38):23843-50. PubMed ID: 9295332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.
    Panaretou B; Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1998 Aug; 17(16):4829-36. PubMed ID: 9707442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform.
    McLaughlin SH; Ventouras LA; Lobbezoo B; Jackson SE
    J Mol Biol; 2004 Nov; 344(3):813-26. PubMed ID: 15533447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
    Meyer P; Prodromou C; Liao C; Hu B; Mark Roe S; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH
    EMBO J; 2004 Feb; 23(3):511-9. PubMed ID: 14739935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of interactions of the Hsp90 with adenosine nucleotides: A comparative perspective.
    Minari K; de Azevedo ÉC; Kiraly VTR; Batista FAH; de Moraes FR; de Melo FA; Nascimento AS; Gava LM; Ramos CHI; Borges JC
    Int J Biol Macromol; 2019 Jun; 130():125-138. PubMed ID: 30797004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADP, AMP-PNP, geldanamycin, and radicicol.
    Dehner A; Furrer J; Richter K; Schuster I; Buchner J; Kessler H
    Chembiochem; 2003 Sep; 4(9):870-7. PubMed ID: 12964162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and structural studies of the interaction of Cdc37 with Hsp90.
    Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED
    J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic inhibition of the Hsp90 ATPase activity.
    Richter K; Moser S; Hagn F; Friedrich R; Hainzl O; Heller M; Schlee S; Kessler H; Reinstein J; Buchner J
    J Biol Chem; 2006 Apr; 281(16):11301-11. PubMed ID: 16461354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinated ATP hydrolysis by the Hsp90 dimer.
    Richter K; Muschler P; Hainzl O; Buchner J
    J Biol Chem; 2001 Sep; 276(36):33689-96. PubMed ID: 11441008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of ATP and p23 on the conformation of hsp90.
    Sullivan WP; Owen BA; Toft DO
    J Biol Chem; 2002 Nov; 277(48):45942-8. PubMed ID: 12324468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain.
    Raman S; Suguna K
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):688-96. PubMed ID: 26057797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate.
    Sung N; Lee J; Kim JH; Chang C; Joachimiak A; Lee S; Tsai FT
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2952-7. PubMed ID: 26929380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.