These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25868240)

  • 1. [Finite element analysis of temperature field of retina by electrical stimulation with microelectrode array].
    Wang W; Qiao Q; Gao W; Wu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1255-9, 1271. PubMed ID: 25868240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D finite element modeling of epiretinal stimulation: Impact of prosthetic electrode size and distance from the retina.
    Sui X; Huang Y; Feng F; Huang C; Chan LL; Wang G
    Int J Artif Organs; 2015 May; 38(5):277-87. PubMed ID: 26044659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of different three-dimensional electrodes on epiretinal electrical stimulation by modeling analysis.
    Cao X; Sui X; Lyu Q; Li L; Chai X
    J Neuroeng Rehabil; 2015 Aug; 12():73. PubMed ID: 26311232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study.
    Lyu Q; Lu Z; Li H; Qiu S; Guo J; Sui X; Sun P; Li L; Chai X; Lovell NH
    Int J Neural Syst; 2020 Mar; 30(3):2050006. PubMed ID: 32116093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays.
    Rizzo JF; Wyatt J; Loewenstein J; Kelly S; Shire D
    Invest Ophthalmol Vis Sci; 2003 Dec; 44(12):5355-61. PubMed ID: 14638738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation.
    Jiang X; Sui X; Lu Y; Yan Y; Zhou C; Li L; Ren Q; Chai X
    J Neuroeng Rehabil; 2013 May; 10():48. PubMed ID: 23718827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Finite element analysis of electric field of extracellular stimulation of optic nerve with a spiral cuff electrode].
    Guo H; Qiao Q; Luo F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Oct; 29(5):820-4. PubMed ID: 23198414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D flexible microelectrode array for subretinal stimulation.
    Seo HW; Kim N; Ahn J; Cha S; Goo YS; Kim S
    J Neural Eng; 2019 Aug; 16(5):056016. PubMed ID: 31357188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes.
    Nakauchi K; Fujikado T; Kanda H; Morimoto T; Choi JS; Ikuno Y; Sakaguchi H; Kamei M; Ohji M; Yagi T; Nishimura S; Sawai H; Fukuda Y; Tano Y
    Graefes Arch Clin Exp Ophthalmol; 2005 Feb; 243(2):169-74. PubMed ID: 15586287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathology of damaging electrical stimulation in the retina.
    Colodetti L; Weiland JD; Colodetti S; Ray A; Seiler MJ; Hinton DR; Humayun MS
    Exp Eye Res; 2007 Jul; 85(1):23-33. PubMed ID: 17531974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects on Retinal Stimulation of the Geometry and the Insertion Location of Penetrating Electrodes.
    Son Y; Chen ZC; Roh H; Lee BC; Im M
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3803-3812. PubMed ID: 37729573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations to study spatial extent of stimulation and effect of electrode-tissue gap in subretinal implants.
    Kasi H; Bertsch A; Guyomard JL; Kolomiets B; Picaud S; Pelizzone M; Renaud P
    Med Eng Phys; 2011 Jul; 33(6):755-63. PubMed ID: 21354850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Spatial Extent of Epiretinal Electrical Stimulation in the Healthy Mouse Retina.
    Hosseinzadeh Z; Jalligampala A; Zrenner E; Rathbun DL
    Neurosignals; 2017; 25(1):15-25. PubMed ID: 28743131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of the current-density and electric field generated by metal microelectrodes.
    McIntyre CC; Grill WM
    Ann Biomed Eng; 2001 Mar; 29(3):227-35. PubMed ID: 11310784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Honeycomb-Patterned Graphene Microelectrodes: A Promising Approach for Safe and Effective Retinal Stimulation Based on Electro-Thermo-Mechanical Modeling and Simulation.
    Asghar SA; Mahadevappa M
    IEEE Trans Nanobioscience; 2024 Apr; 23(2):262-271. PubMed ID: 37747869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical properties of retinal-electrode interface.
    Shah S; Hines A; Zhou D; Greenberg RJ; Humayun MS; Weiland JD
    J Neural Eng; 2007 Mar; 4(1):S24-9. PubMed ID: 17325413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microelectrode Array With Integrated Pneumatic Channels for Dynamic Control of Electrode Position in Retinal Implants.
    Xu Y; Pang S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2292-2298. PubMed ID: 34705653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials.
    Rizzo JF; Wyatt J; Loewenstein J; Kelly S; Shire D
    Invest Ophthalmol Vis Sci; 2003 Dec; 44(12):5362-9. PubMed ID: 14638739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of thin-film flexible microelectrode arrays for retinal stimulation and recording.
    Mathieson K; Moodie AR; Grant E; Morrison JD
    J Med Eng Technol; 2013 Feb; 37(2):79-85. PubMed ID: 23249248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.