These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 25868395)
21. Enhancing production and purity of 9-OH-AD from phytosterols by balancing metabolic flux of the side-chain degradation and 9-position hydroxylation in Mycobacterium neoaurum. Zhu X; Wang X; Zhang J; Wang X Biotechnol J; 2024 Jan; 19(1):e2300439. PubMed ID: 38129322 [TBL] [Abstract][Full Text] [Related]
22. Engineering phytosterol transport system in Mycobacterium sp. strain MS136 enhances production of 9α-hydroxy-4-androstene-3,17-dione. He K; Sun H; Song H Biotechnol Lett; 2018 Apr; 40(4):673-678. PubMed ID: 29392454 [TBL] [Abstract][Full Text] [Related]
23. Enhancement of 9α-Hydroxy-4-androstene-3,17-dione Production from Soybean Phytosterols by Deficiency of a Regulated Intramembrane Proteolysis Metalloprotease in Mycobacterium neoaurum. Xiong LB; Sun WJ; Liu YJ; Wang FQ; Wei DZ J Agric Food Chem; 2017 Dec; 65(48):10520-10525. PubMed ID: 29131627 [TBL] [Abstract][Full Text] [Related]
24. Inactivation and augmentation of the primary 3-ketosteroid-{delta}1- dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene- 3,17-dione or 1,4-androstadiene-3,17-dione. Wei W; Wang FQ; Fan SY; Wei DZ Appl Environ Microbiol; 2010 Jul; 76(13):4578-82. PubMed ID: 20453136 [TBL] [Abstract][Full Text] [Related]
25. Production of testosterone from phytosterol using a single-step microbial transformation by a mutant of Mycobacterium sp. Lo CK; Pan CP; Liu WH J Ind Microbiol Biotechnol; 2002 May; 28(5):280-3. PubMed ID: 11986932 [TBL] [Abstract][Full Text] [Related]
26. Genetic Techniques for Manipulation of the Phytosterol Biotransformation Strain Mycobacterium neoaurum NRRL B-3805. Loraine JK; Smith MCM Methods Mol Biol; 2017; 1645():93-108. PubMed ID: 28710623 [TBL] [Abstract][Full Text] [Related]
27. Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Yao K; Xu LQ; Wang FQ; Wei DZ Metab Eng; 2014 Jul; 24():181-91. PubMed ID: 24831710 [TBL] [Abstract][Full Text] [Related]
28. Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum. Shen YB; Wang M; Li HN; Wang YB; Luo JM J Ind Microbiol Biotechnol; 2012 Sep; 39(9):1253-9. PubMed ID: 22614451 [TBL] [Abstract][Full Text] [Related]
29. Phytosterol conversion into C9 non-hydroxylated derivatives through gene regulation in Mycobacterium fortuitum. Liu X; He B; Zhang J; Yuan C; Han S; Du G; Shi J; Sun J; Zhang B Appl Microbiol Biotechnol; 2023 Dec; 107(24):7635-7646. PubMed ID: 37831185 [TBL] [Abstract][Full Text] [Related]
30. Efficient Bioconversion of High Concentration Phytosterol Microdispersion to 4-Androstene-3,17-Dione (AD) by Mycobacterium sp. B3805. Mancilla RA; Little C; Amoroso A Appl Biochem Biotechnol; 2018 Jun; 185(2):494-506. PubMed ID: 29196932 [TBL] [Abstract][Full Text] [Related]
31. Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum. Zhang Y; Zhou X; Wang X; Wang L; Xia M; Luo J; Shen Y; Wang M Microb Cell Fact; 2020 Jan; 19(1):13. PubMed ID: 31992309 [TBL] [Abstract][Full Text] [Related]
32. Identification, function, and application of 3-ketosteroid Δ1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons. Zhang R; Liu X; Wang Y; Han Y; Sun J; Shi J; Zhang B Microb Cell Fact; 2018 May; 17(1):77. PubMed ID: 29776364 [TBL] [Abstract][Full Text] [Related]
33. Scale-Up of Phytosterols Bioconversion into Androstenedione. Martínez-Cámara S; Bahíllo E; Barredo JL; Rodríguez-Sáiz M Methods Mol Biol; 2017; 1645():199-210. PubMed ID: 28710630 [TBL] [Abstract][Full Text] [Related]
34. Mutation breeding of high 4-androstene-3,17-dione-producing Mycobacterium neoaurum ZADF-4 by atmospheric and room temperature plasma treatment. Liu C; Zhang X; Rao ZM; Shao ML; Zhang LL; Wu D; Xu ZH; Li H J Zhejiang Univ Sci B; 2015 Apr; 16(4):286-95. PubMed ID: 25845362 [TBL] [Abstract][Full Text] [Related]
35. [Conversion of soybean sterols into 3,17-diketosteroids using actinobacteria Mycobacterium neoaurum, Pimelobacter simplex, and Rhodococcus erythropolis]. Andriushina VA; Rodina NV; Stytsenko TC; Luu DH; Druzhinina AV; Iaderets VV; Voîshvillo NE Prikl Biokhim Mikrobiol; 2011; 47(3):297-301. PubMed ID: 21790029 [TBL] [Abstract][Full Text] [Related]
36. Cofactor engineering to regulate NAD Su L; Shen Y; Zhang W; Gao T; Shang Z; Wang M Microb Cell Fact; 2017 Oct; 16(1):182. PubMed ID: 29084539 [TBL] [Abstract][Full Text] [Related]
38. Identification of bottlenecks in 4-androstene-3,17-dione/1,4-androstadiene-3,17-dione synthesis by Mycobacterium neoaurum JC-12 through comparative proteomics. Liu C; Shao M; Osire T; Xu Z; Rao Z J Biosci Bioeng; 2021 Mar; 131(3):264-270. PubMed ID: 33308966 [TBL] [Abstract][Full Text] [Related]
39. A new steroid-transforming strain of Mycobacterium neoaurum and cloning of 3-ketosteroid 9alpha-hydroxylase in NwIB-01. Wei W; Fan S; Wang F; Wei D Appl Biochem Biotechnol; 2010 Nov; 162(5):1446-56. PubMed ID: 20204712 [TBL] [Abstract][Full Text] [Related]
40. A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone. Tang R; Shen Y; Xia M; Tu L; Luo J; Geng Y; Gao T; Zhou H; Zhao Y; Wang M Bioresour Technol; 2019 Jul; 283():242-250. PubMed ID: 30913432 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]