These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25868800)

  • 41. Animal models: Towards a myeloma mouse.
    DeWeerdt S
    Nature; 2011 Dec; 480(7377):S38-9. PubMed ID: 22169799
    [No Abstract]   [Full Text] [Related]  

  • 42. A unique three-dimensional SCID-polymeric scaffold (SCID-synth-hu) model for in vivo expansion of human primary multiple myeloma cells.
    Calimeri T; Battista E; Conforti F; Neri P; Di Martino MT; Rossi M; Foresta U; Piro E; Ferrara F; Amorosi A; Bahlis N; Anderson KC; Munshi N; Tagliaferri P; Causa F; Tassone P
    Leukemia; 2011 Apr; 25(4):707-11. PubMed ID: 21233838
    [No Abstract]   [Full Text] [Related]  

  • 43. Mouse models of multiple myeloma: technologic platforms and perspectives.
    Rossi M; Botta C; Arbitrio M; Grembiale RD; Tagliaferri P; Tassone P
    Oncotarget; 2018 Apr; 9(28):20119-20133. PubMed ID: 29732008
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The SCID mouse as a model for multiple myeloma.
    Ahsmann EJ; van Tol MJ; Oudeman-Gruber J; Lokhorst H; Uytdehaag FG; Schuurman HJ; Bloem AC
    Br J Haematol; 1995 Feb; 89(2):319-27. PubMed ID: 7873382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The proliferative potential of myeloma plasma cells manifest in the SCID-hu host.
    Yaccoby S; Epstein J
    Blood; 1999 Nov; 94(10):3576-82. PubMed ID: 10552969
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The C.B.17 scid mouse strain as a model for human disseminated leukaemia and myeloma in vivo.
    Cattan AR; Douglas E
    Leuk Res; 1994 Jul; 18(7):513-22. PubMed ID: 8022201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple myeloma biology: lessons from the 5TMM models.
    Vanderkerken K; Asosingh K; Croucher P; Van Camp B
    Immunol Rev; 2003 Aug; 194():196-206. PubMed ID: 12846816
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anti-alpha4 integrin monoclonal antibody inhibits multiple myeloma growth in a murine model.
    Olson DL; Burkly LC; Leone DR; Dolinski BM; Lobb RR
    Mol Cancer Ther; 2005 Jan; 4(1):91-9. PubMed ID: 15657357
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Animal models of multiple myeloma and their utility in drug discovery.
    Campbell RA; Berenson JR
    Curr Protoc Pharmacol; 2008 Mar; Chapter 14():Unit 14.9. PubMed ID: 22294221
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A model that reproduces syndromes associated with human multiple myeloma in nonirradiated SCID mice.
    Barton BE; Cullison J; Jackson J; Murphy T
    Proc Soc Exp Biol Med; 2000 Feb; 223(2):190-7. PubMed ID: 10654623
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease.
    Fowler JA; Lwin ST; Drake MT; Edwards JR; Kyle RA; Mundy GR; Edwards CM
    Blood; 2011 Nov; 118(22):5872-82. PubMed ID: 21908434
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants.
    Dai L; Gu N; Chen BA; Marriott G
    Oncotarget; 2016 Apr; 7(16):21076-90. PubMed ID: 27049725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A murine model of myeloma that allows genetic manipulation of the host microenvironment.
    Fowler JA; Mundy GR; Lwin ST; Lynch CC; Edwards CM
    Dis Model Mech; 2009; 2(11-12):604-11. PubMed ID: 19779066
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pleurocidin-family cationic antimicrobial peptides mediate lysis of multiple myeloma cells and impair the growth of multiple myeloma xenografts.
    Hilchie AL; Conrad DM; Coombs MR; Zemlak T; Doucette CD; Liwski RS; Hoskin DW
    Leuk Lymphoma; 2013 Oct; 54(10):2255-62. PubMed ID: 23350892
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Promises and challenges of MicroRNA-based treatment of multiple myeloma.
    Tagliaferri P; Rossi M; Di Martino MT; Amodio N; Leone E; Gulla A; Neri A; Tassone P
    Curr Cancer Drug Targets; 2012 Sep; 12(7):838-46. PubMed ID: 22671926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microenvironment: Neighbourhood watch.
    Hughes V
    Nature; 2011 Dec; 480(7377):S48-9. PubMed ID: 22169803
    [No Abstract]   [Full Text] [Related]  

  • 57. Adoptive B-cell transfer mouse model of human myeloma.
    Tompkins VS; Rosean TR; Holman CJ; DeHoedt C; Olivier AK; Duncan KM; Jing X; Foor SD; Acevedo MR; Walsh SA; Tricot G; Zhan F; Janz S
    Leukemia; 2016 Apr; 30(4):962-6. PubMed ID: 26202932
    [No Abstract]   [Full Text] [Related]  

  • 58. The 5TMM series: a useful in vivo mouse model of human multiple myeloma.
    Asosingh K; Radl J; Van Riet I; Van Camp B; Vanderkerken K
    Hematol J; 2000; 1(5):351-6. PubMed ID: 11920212
    [No Abstract]   [Full Text] [Related]  

  • 59. Direct measurement of hypoxia in a xenograft multiple myeloma model by optical-resolution photoacoustic microscopy.
    Imai T; Muz B; Yeh CH; Yao J; Zhang R; Azab AK; Wang L
    Cancer Biol Ther; 2017 Feb; 18(2):101-105. PubMed ID: 28045569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineered Nanoplatelets for Enhanced Treatment of Multiple Myeloma and Thrombus.
    Hu Q; Qian C; Sun W; Wang J; Chen Z; Bomba HN; Xin H; Shen Q; Gu Z
    Adv Mater; 2016 Nov; 28(43):9573-9580. PubMed ID: 27626769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.