BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

621 related articles for article (PubMed ID: 25868874)

  • 1. Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency.
    Hickmann FH; Cecatto C; Kleemann D; Monteiro WO; Castilho RF; Amaral AU; Wajner M
    Biochim Biophys Acta; 2015; 1847(6-7):620-8. PubMed ID: 25868874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders?
    Tonin AM; Amaral AU; Busanello EN; Gasparotto J; Gelain DP; Gregersen N; Wajner M
    Biochim Biophys Acta; 2014 Sep; 1842(9):1658-67. PubMed ID: 24946182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders.
    Cecatto C; Hickmann FH; Rodrigues MD; Amaral AU; Wajner M
    FEBS J; 2015 Dec; 282(24):4714-26. PubMed ID: 26408230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle.
    Cecatto C; Godoy KDS; da Silva JC; Amaral AU; Wajner M
    Toxicol In Vitro; 2016 Oct; 36():1-9. PubMed ID: 27371118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria.
    Tonin AM; Amaral AU; Busanello EN; Grings M; Castilho RF; Wajner M
    J Bioenerg Biomembr; 2013 Feb; 45(1-2):47-57. PubMed ID: 23065309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disturbance of mitochondrial energy homeostasis caused by the metabolites accumulating in LCHAD and MTP deficiencies in rat brain.
    Tonin AM; Ferreira GC; Grings M; Viegas CM; Busanello EN; Amaral AU; Zanatta A; Schuck PF; Wajner M
    Life Sci; 2010 May; 86(21-22):825-31. PubMed ID: 20399795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca
    Cecatto C; Amaral AU; da Silva JC; Wajner A; Schimit MOV; da Silva LHR; Wajner SM; Zanatta Â; Castilho RF; Wajner M
    FEBS J; 2018 Apr; 285(8):1437-1455. PubMed ID: 29476646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairment of mitochondrial bioenergetics and permeability transition induction caused by major long-chain fatty acids accumulating in VLCAD deficiency in skeletal muscle as potential pathomechanisms of myopathy.
    Cecatto C; Amaral AU; Roginski AC; Castilho RF; Wajner M
    Toxicol In Vitro; 2020 Feb; 62():104665. PubMed ID: 31629068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological inhibition of carnitine palmitoyltransferase 1 restores mitochondrial oxidative phosphorylation in human trifunctional protein deficient fibroblasts.
    Lefort B; Gouache E; Acquaviva C; Tardieu M; Benoist JF; Dumas JF; Servais S; Chevalier S; Vianey-Saban C; Labarthe F
    Biochim Biophys Acta Mol Basis Dis; 2017 Jun; 1863(6):1292-1299. PubMed ID: 28392417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency.
    Amaral AU; Cecatto C; da Silva JC; Wajner A; Godoy KDS; Ribeiro RT; Wajner M
    Biochim Biophys Acta; 2016 Sep; 1857(9):1363-1372. PubMed ID: 27240720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatal pitfalls in newborn screening for mitochondrial trifunctional protein (MTP)/long-chain 3-Hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency.
    Lotz-Havla AS; Röschinger W; Schiergens K; Singer K; Karall D; Konstantopoulou V; Wortmann SB; Maier EM
    Orphanet J Rare Dis; 2018 Jul; 13(1):122. PubMed ID: 30029694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies induce oxidative stress in rat brain.
    Tonin AM; Grings M; Busanello EN; Moura AP; Ferreira GC; Viegas CM; Fernandes CG; Schuck PF; Wajner M
    Neurochem Int; 2010 Jul; 56(8):930-6. PubMed ID: 20381565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification.
    Grings M; Moura AP; Amaral AU; Parmeggiani B; Gasparotto J; Moreira JC; Gelain DP; Wyse AT; Wajner M; Leipnitz G
    Biochim Biophys Acta; 2014 Sep; 1842(9):1413-22. PubMed ID: 24793416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle MRI in patients with long-chain fatty acid oxidation disorders.
    Diekman EF; van der Pol WL; Nievelstein RA; Houten SM; Wijburg FA; Visser G
    J Inherit Metab Dis; 2014 May; 37(3):405-13. PubMed ID: 24305961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that the major metabolites accumulating in medium-chain acyl-CoA dehydrogenase deficiency disturb mitochondrial energy homeostasis in rat brain.
    Schuck PF; Ferreira Gda C; Tonin AM; Viegas CM; Busanello EN; Moura AP; Zanatta A; Klamt F; Wajner M
    Brain Res; 2009 Nov; 1296():117-26. PubMed ID: 19703432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Child neurology: Recurrent rhabdomyolysis due to a fatty acid oxidation disorder.
    Terrone G; Ruoppolo M; Brunetti-Pierri N; Cozzolino C; Scolamiero E; Parenti G; Romano A; Andria G; Salvatore F; Frisso G
    Neurology; 2014 Jan; 82(1):e1-4. PubMed ID: 24379101
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of fasting, feeding and exercise on plasma acylcarnitines among subjects with CPT2D, VLCADD and LCHADD/TFPD.
    Elizondo G; Matern D; Vockley J; Harding CO; Gillingham MB
    Mol Genet Metab; 2020; 131(1-2):90-97. PubMed ID: 32928639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RETINAL PHENOTYPE IN A CASE OF LCHAD/TFP DEFICIENCY WITH LATE-STAGE DIAGNOSIS.
    Knowles JA; Dimopoulos IS; MacDonald IM
    Retin Cases Brief Rep; 2019 Summer; 13(3):279-282. PubMed ID: 28301411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Variation of long-chain 3-hydroxyacyl-CoA dehydrogenase DNA methylation in placenta of different preeclampsia-like mouse models].
    Han Y; Yang Z; Ding X; Yu H; Yi Y
    Zhonghua Fu Chan Ke Za Zhi; 2015 Oct; 50(10):740-6. PubMed ID: 26675572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical outcome, biochemical and therapeutic follow-up in 14 Austrian patients with Long-Chain 3-Hydroxy Acyl CoA Dehydrogenase Deficiency (LCHADD).
    Karall D; Brunner-Krainz M; Kogelnig K; Konstantopoulou V; Maier EM; Möslinger D; Plecko B; Sperl W; Volkmar B; Scholl-Bürgi S
    Orphanet J Rare Dis; 2015 Feb; 10():21. PubMed ID: 25888220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.