These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 25868977)
41. A novel oncogenic role of inositol phosphatase SHIP2 in ER-negative breast cancer stem cells: involvement of JNK/vimentin activation. Fu CH; Lin RJ; Yu J; Chang WW; Liao GS; Chang WY; Tseng LM; Tsai YF; Yu JC; Yu AL Stem Cells; 2014 Aug; 32(8):2048-60. PubMed ID: 24802135 [TBL] [Abstract][Full Text] [Related]
42. Development of a Sox2 reporter system modeling cellular heterogeneity in glioma. Stoltz K; Sinyuk M; Hale JS; Wu Q; Otvos B; Walker K; Vasanji A; Rich JN; Hjelmeland AB; Lathia JD Neuro Oncol; 2015 Mar; 17(3):361-71. PubMed ID: 25416826 [TBL] [Abstract][Full Text] [Related]
43. Effect of fibroblasts on breast cancer cell mammosphere formation and regulation of stem cell-related gene expression. Zhang F; Song C; Ma Y; Tang L; Xu Y; Wang H Int J Mol Med; 2011 Sep; 28(3):365-71. PubMed ID: 21573501 [TBL] [Abstract][Full Text] [Related]
44. Immunohistochemical analysis of cancer stem cell markers in invasive breast carcinoma and associated ductal carcinoma in situ: relationships with markers of tumor hypoxia and microvascularity. Currie MJ; Beardsley BE; Harris GC; Gunningham SP; Dachs GU; Dijkstra B; Morrin HR; Wells JE; Robinson BA Hum Pathol; 2013 Mar; 44(3):402-11. PubMed ID: 23036368 [TBL] [Abstract][Full Text] [Related]
45. Flow cytometric analysis for detection of tumor-initiating cells in feline mammary carcinoma cell lines. Michishita M; Otsuka A; Nakahira R; Nakagawa T; Sasaki N; Arai T; Takahashi K Vet Immunol Immunopathol; 2013 Nov; 156(1-2):73-81. PubMed ID: 24041801 [TBL] [Abstract][Full Text] [Related]
46. Targeting breast cancer stem cells in triple-negative breast cancer using a combination of LBH589 and salinomycin. Kai M; Kanaya N; Wu SV; Mendez C; Nguyen D; Luu T; Chen S Breast Cancer Res Treat; 2015 Jun; 151(2):281-94. PubMed ID: 25904215 [TBL] [Abstract][Full Text] [Related]
47. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination. Fonseca NA; Rodrigues AS; Rodrigues-Santos P; Alves V; Gregório AC; Valério-Fernandes Â; Gomes-da-Silva LC; Rosa MS; Moura V; Ramalho-Santos J; Simões S; Moreira JN Biomaterials; 2015 Nov; 69():76-88. PubMed ID: 26283155 [TBL] [Abstract][Full Text] [Related]
48. The Hedgehog signaling pathway plays an essential role in maintaining the CD44+CD24-/low subpopulation and the side population of breast cancer cells. Tanaka H; Nakamura M; Kameda C; Kubo M; Sato N; Kuroki S; Tanaka M; Katano M Anticancer Res; 2009 Jun; 29(6):2147-57. PubMed ID: 19528475 [TBL] [Abstract][Full Text] [Related]
49. Hypoxia Induces the Acquisition of Cancer Stem-like Phenotype Via Upregulation and Activation of Signal Transducer and Activator of Transcription-3 (STAT3) in MDA-MB-231, a Triple Negative Breast Cancer Cell Line. Soleymani Abyaneh H; Gupta N; Alshareef A; Gopal K; Lavasanifar A; Lai R Cancer Microenviron; 2018 Dec; 11(2-3):141-152. PubMed ID: 30255421 [TBL] [Abstract][Full Text] [Related]
50. IMP3 promotes stem-like properties in triple-negative breast cancer by regulating SLUG. Samanta S; Sun H; Goel HL; Pursell B; Chang C; Khan A; Greiner DL; Cao S; Lim E; Shultz LD; Mercurio AM Oncogene; 2016 Mar; 35(9):1111-21. PubMed ID: 25982283 [TBL] [Abstract][Full Text] [Related]
51. New 3-alkylpyridine marine alkaloid analogues as promising antitumor agents against the CD44 de Lima AB; Barbosa CS; Gonçalves AMMN; Santos FVD; Viana GHR; Varotti FP; Silva LM Chem Biol Drug Des; 2017 Jul; 90(1):5-11. PubMed ID: 27995747 [TBL] [Abstract][Full Text] [Related]
52. Upregulation of the Oct3/4 Network in Basal Breast Cancer Is Associated with Its Metastatic Potential and Shows Tissue Dependent Variability. Rajan RG; Krutilina RI; Ignatova TN; Pavicevich ZS; Dulatova GM; Lane MA; Chatterjee AR; Rooney RJ; Antony M; Hagerty VR; Kukekov NV; Hanafy KA; Vrionis FD Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298091 [TBL] [Abstract][Full Text] [Related]
53. CD24 Expression and differential resistance to chemotherapy in triple-negative breast cancer. Deng X; Apple S; Zhao H; Song J; Lee M; Luo W; Wu X; Chung D; Pietras RJ; Chang HR Oncotarget; 2017 Jun; 8(24):38294-38308. PubMed ID: 28418843 [TBL] [Abstract][Full Text] [Related]
54. [A Modified Lentivirus-Based Reporter for Magnetic Separation of Cancer Stem Cells]. Ivanova AE; Kravchenko DS; Chumakov SP Mol Biol (Mosk); 2020; 54(1):95-102. PubMed ID: 32163393 [TBL] [Abstract][Full Text] [Related]
55. SOX2 gene expression and its role in triple negative breast cancer tissues. Yao GD; Niu YY; Chen KX; Meng HX; Yao GD; Song HT; Tian ZN; Geng JS; Feng MY J Biol Regul Homeost Agents; 2018; 32(6):1399-1406. PubMed ID: 30574744 [TBL] [Abstract][Full Text] [Related]
58. KIF11 is required for proliferation and self-renewal of docetaxel resistant triple negative breast cancer cells. Jiang M; Zhuang H; Xia R; Gan L; Wu Y; Ma J; Sun Y; Zhuang Z Oncotarget; 2017 Nov; 8(54):92106-92118. PubMed ID: 29190901 [TBL] [Abstract][Full Text] [Related]
59. Identification of two cancer stem cell-like populations in triple-negative breast cancer xenografts. Nakayama J; Matsunaga H; Arikawa K; Yoda T; Hosokawa M; Takeyama H; Yamamoto Y; Semba K Dis Model Mech; 2022 Jun; 15(6):. PubMed ID: 35611554 [TBL] [Abstract][Full Text] [Related]
60. Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis. Ramchandani D; Berisa M; Tavarez DA; Li Z; Miele M; Bai Y; Lee SB; Ban Y; Dephoure N; Hendrickson RC; Cloonan SM; Gao D; Cross JR; Vahdat LT; Mittal V Nat Commun; 2021 Dec; 12(1):7311. PubMed ID: 34911956 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]