These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 25869033)
1. Control of response reliability by parvalbumin-expressing interneurons in visual cortex. Zhu Y; Qiao W; Liu K; Zhong H; Yao H Nat Commun; 2015 Apr; 6():6802. PubMed ID: 25869033 [TBL] [Abstract][Full Text] [Related]
2. Reliable Sensory Processing in Mouse Visual Cortex through Cooperative Interactions between Somatostatin and Parvalbumin Interneurons. Rikhye RV; Yildirim M; Hu M; Breton-Provencher V; Sur M J Neurosci; 2021 Oct; 41(42):8761-8778. PubMed ID: 34493543 [TBL] [Abstract][Full Text] [Related]
3. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. Moore AK; Wehr M J Neurosci; 2013 Aug; 33(34):13713-23. PubMed ID: 23966693 [TBL] [Abstract][Full Text] [Related]
4. Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex. Yekhlef L; Breschi GL; Lagostena L; Russo G; Taverna S J Neurophysiol; 2015 Mar; 113(5):1616-30. PubMed ID: 25505119 [TBL] [Abstract][Full Text] [Related]
5. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. Xu X; Roby KD; Callaway EM J Comp Neurol; 2010 Feb; 518(3):389-404. PubMed ID: 19950390 [TBL] [Abstract][Full Text] [Related]
6. Distinct Roles of Parvalbumin- and Somatostatin-Expressing Interneurons in Working Memory. Kim D; Jeong H; Lee J; Ghim JW; Her ES; Lee SH; Jung MW Neuron; 2016 Nov; 92(4):902-915. PubMed ID: 27746132 [TBL] [Abstract][Full Text] [Related]
7. Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells. Safari MS; Mirnajafi-Zadeh J; Hioki H; Tsumoto T Sci Rep; 2017 Oct; 7(1):12764. PubMed ID: 28986578 [TBL] [Abstract][Full Text] [Related]
8. Binocular deprivation induces both age-dependent and age-independent forms of plasticity in parvalbumin inhibitory neuron visual response properties. Feese BD; Pafundo DE; Schmehl MN; Kuhlman SJ J Neurophysiol; 2018 Feb; 119(2):738-751. PubMed ID: 29118195 [TBL] [Abstract][Full Text] [Related]
9. Target-specific effects of somatostatin-expressing interneurons on neocortical visual processing. Cottam JC; Smith SL; Häusser M J Neurosci; 2013 Dec; 33(50):19567-78. PubMed ID: 24336721 [TBL] [Abstract][Full Text] [Related]
10. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Atallah BV; Bruns W; Carandini M; Scanziani M Neuron; 2012 Jan; 73(1):159-70. PubMed ID: 22243754 [TBL] [Abstract][Full Text] [Related]
11. Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations. Chen G; Zhang Y; Li X; Zhao X; Ye Q; Lin Y; Tao HW; Rasch MJ; Zhang X Neuron; 2017 Dec; 96(6):1403-1418.e6. PubMed ID: 29268099 [TBL] [Abstract][Full Text] [Related]
12. Parvalbumin-Positive Interneurons Regulate Neuronal Ensembles in Visual Cortex. Agetsuma M; Hamm JP; Tao K; Fujisawa S; Yuste R Cereb Cortex; 2018 May; 28(5):1831-1845. PubMed ID: 29106504 [TBL] [Abstract][Full Text] [Related]
14. Chemogenetic Activation of Cortical Parvalbumin-Positive Interneurons Reverses Noise-Induced Impairments in Gap Detection. Masri S; Chan N; Marsh T; Zinsmaier A; Schaub D; Zhang L; Wang W; Bao S J Neurosci; 2021 Oct; 41(42):8848-8857. PubMed ID: 34452937 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. Litwin-Kumar A; Rosenbaum R; Doiron B J Neurophysiol; 2016 Mar; 115(3):1399-409. PubMed ID: 26740531 [TBL] [Abstract][Full Text] [Related]
16. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Royer S; Zemelman BV; Losonczy A; Kim J; Chance F; Magee JC; Buzsáki G Nat Neurosci; 2012 Mar; 15(5):769-75. PubMed ID: 22446878 [TBL] [Abstract][Full Text] [Related]
17. Inhibition by Somatostatin Interneurons in Olfactory Cortex. Large AM; Kunz NA; Mielo SL; Oswald AM Front Neural Circuits; 2016; 10():62. PubMed ID: 27582691 [TBL] [Abstract][Full Text] [Related]
18. Network-Level Control of Frequency Tuning in Auditory Cortex. Kato HK; Asinof SK; Isaacson JS Neuron; 2017 Jul; 95(2):412-423.e4. PubMed ID: 28689982 [TBL] [Abstract][Full Text] [Related]
19. Activation of specific interneurons improves V1 feature selectivity and visual perception. Lee SH; Kwan AC; Zhang S; Phoumthipphavong V; Flannery JG; Masmanidis SC; Taniguchi H; Huang ZJ; Zhang F; Boyden ES; Deisseroth K; Dan Y Nature; 2012 Aug; 488(7411):379-83. PubMed ID: 22878719 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Pfeffer CK; Xue M; He M; Huang ZJ; Scanziani M Nat Neurosci; 2013 Aug; 16(8):1068-76. PubMed ID: 23817549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]