BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 25869071)

  • 1. Myostatin regulates miR-431 expression via the Ras-Mek-Erk signaling pathway.
    Wu R; Li H; Li T; Zhang Y; Zhu D
    Biochem Biophys Res Commun; 2015 May; 461(2):224-9. PubMed ID: 25869071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant myostatin reduces highly expressed microRNAs in differentiating C2C12 cells.
    Graham ZA; De Gasperi R; Bauman WA; Cardozo CP
    Biochem Biophys Rep; 2017 Mar; 9():273-280. PubMed ID: 28691106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G protein-coupled receptor kinase 2 regulates mitochondrial bioenergetics and impairs myostatin-mediated autophagy in muscle cells.
    Manfredi LH; Ang J; Peker N; Dagda RK; McFarlane C
    Am J Physiol Cell Physiol; 2019 Oct; 317(4):C674-C686. PubMed ID: 31268780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEF2A regulates the Gtl2-Dio3 microRNA mega-cluster to modulate WNT signaling in skeletal muscle regeneration.
    Snyder CM; Rice AL; Estrella NL; Held A; Kandarian SC; Naya FJ
    Development; 2013 Jan; 140(1):31-42. PubMed ID: 23154418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNAs in skeletal muscle biology and exercise adaptation.
    Kirby TJ; McCarthy JJ
    Free Radic Biol Med; 2013 Sep; 64():95-105. PubMed ID: 23872025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of microRNA modulation on bioartificial muscle function.
    Rhim C; Cheng CS; Kraus WE; Truskey GA
    Tissue Eng Part A; 2010 Dec; 16(12):3589-97. PubMed ID: 20670163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.
    Shi L; Zhou B; Li P; Schinckel AP; Liang T; Wang H; Li H; Fu L; Chu Q; Huang R
    Cell Signal; 2015 Sep; 27(9):1895-904. PubMed ID: 25958325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myostatin Neutralization Results in Preservation of Muscle Mass and Strength in Preclinical Models of Tumor-Induced Muscle Wasting.
    Smith RC; Cramer MS; Mitchell PJ; Capen A; Huber L; Wang R; Myers L; Jones BE; Eastwood BJ; Ballard D; Hanson J; Credille KM; Wroblewski VJ; Lin BK; Heuer JG
    Mol Cancer Ther; 2015 Jul; 14(7):1661-70. PubMed ID: 25908685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy.
    Zanotti S; Gibertini S; Curcio M; Savadori P; Pasanisi B; Morandi L; Cornelio F; Mantegazza R; Mora M
    Biochim Biophys Acta; 2015 Jul; 1852(7):1451-64. PubMed ID: 25892183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disease course in mdx:utrophin+/- mice: comparison of three mouse models of Duchenne muscular dystrophy.
    McDonald AA; Hebert SL; Kunz MD; Ralles SJ; McLoon LK
    Physiol Rep; 2015 Apr; 3(4):. PubMed ID: 25921779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4.
    Lee KP; Shin YJ; Panda AC; Abdelmohsen K; Kim JY; Lee SM; Bahn YJ; Choi JY; Kwon ES; Baek SJ; Kim SY; Gorospe M; Kwon KS
    Genes Dev; 2015 Aug; 29(15):1605-17. PubMed ID: 26215566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation.
    Robriquet F; Lardenois A; Babarit C; Larcher T; Dubreil L; Leroux I; Zuber C; Ledevin M; Deschamps JY; Fromes Y; Cherel Y; Guevel L; Rouger K
    PLoS One; 2015; 10(5):e0123336. PubMed ID: 25955839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dihydromyricetin improves skeletal muscle insulin sensitivity by inducing autophagy via the AMPK-PGC-1α-Sirt3 signaling pathway.
    Shi L; Zhang T; Zhou Y; Zeng X; Ran L; Zhang Q; Zhu J; Mi M
    Endocrine; 2015 Nov; 50(2):378-89. PubMed ID: 25896550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of SERCA1b Silencing on the Differentiation and Calcium Homeostasis of C2C12 Skeletal Muscle Cells.
    Tóth A; Fodor J; Vincze J; Oláh T; Juhász T; Zákány R; Csernoch L; Zádor E
    PLoS One; 2015; 10(4):e0123583. PubMed ID: 25893964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation.
    Nguyen NU; Wang HV
    PLoS One; 2015; 10(4):e0124762. PubMed ID: 25875253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The AKT/mTOR signaling pathway plays a key role in statin-induced myotoxicity.
    Bonifacio A; Sanvee GM; Bouitbir J; Krähenbühl S
    Biochim Biophys Acta; 2015 Aug; 1853(8):1841-9. PubMed ID: 25913013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myoblast-conditioned media improve regeneration and revascularization of ischemic muscles in diabetic mice.
    Kozakowska M; Kotlinowski J; Grochot-Przeczek A; Ciesla M; Pilecki B; Derlacz R; Dulak J; Jozkowicz A
    Stem Cell Res Ther; 2015 Apr; 6(1):61. PubMed ID: 25889676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the sarcomere to correct muscle function.
    Hwang PM; Sykes BD
    Nat Rev Drug Discov; 2015 May; 14(5):313-28. PubMed ID: 25881969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-30e is negatively regulated by myostatin in skeletal muscle and is functionally related to fiber-type composition.
    Jia H; Zhao Y; Li T; Zhang Y; Zhu D
    Acta Biochim Biophys Sin (Shanghai); 2017 May; 49(5):392-399. PubMed ID: 28338991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The elusive role of myostatin signaling for muscle regeneration and maintenance of muscle and bone homeostasis.
    Mitra A; Qaisar R; Bose B; Sudheer SP
    Osteoporos Sarcopenia; 2023 Mar; 9(1):1-7. PubMed ID: 37082359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.