BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25869113)

  • 1. Analysis of bio-anode performance through electrochemical impedance spectroscopy.
    ter Heijne A; Schaetzle O; Gimenez S; Navarro L; Hamelers B; Fabregat-Santiago F
    Bioelectrochemistry; 2015 Dec; 106(Pt A):64-72. PubMed ID: 25869113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH.
    Jung S; Mench MM; Regan JM
    Environ Sci Technol; 2011 Oct; 45(20):9069-74. PubMed ID: 21902172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.
    Lu Z; Girguis P; Liang P; Shi H; Huang G; Cai L; Zhang L
    Bioprocess Biosyst Eng; 2015 Jul; 38(7):1325-33. PubMed ID: 25656699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance.
    Cercado B; Cházaro-Ruiz LF; Ruiz V; López-Prieto Ide J; Buitrón G; Razo-Flores E
    Biosens Bioelectron; 2013 Dec; 50():373-81. PubMed ID: 23891866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly.
    Min B; Poulsen FW; Thygesen A; Angelidaki I
    Bioresour Technol; 2012 Aug; 118():412-7. PubMed ID: 22705964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reference and counter electrode positions affect electrochemical characterization of bioanodes in different bioelectrochemical systems.
    Zhang F; Liu J; Ivanov I; Hatzell MC; Yang W; Ahn Y; Logan BE
    Biotechnol Bioeng; 2014 Oct; 111(10):1931-9. PubMed ID: 24729040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell.
    Manohar AK; Bretschger O; Nealson KH; Mansfeld F
    Bioelectrochemistry; 2008 Apr; 72(2):149-54. PubMed ID: 18294928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization.
    Liang DW; Peng SK; Lu SF; Liu YY; Lan F; Xiang Y
    Bioresour Technol; 2011 Dec; 102(23):10881-5. PubMed ID: 21974881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation.
    Hidalgo D; Sacco A; Hernández S; Tommasi T
    Bioresour Technol; 2015 Nov; 195():139-46. PubMed ID: 26166463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of external resistance acclimation on charge transfer and diffusion resistance in bench-scale microbial fuel cells.
    Rossi R; Logan BE
    Bioresour Technol; 2020 Dec; 318():123921. PubMed ID: 32768279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy.
    Borole AP; Aaron D; Hamilton CY; Tsouris C
    Environ Sci Technol; 2010 Apr; 44(7):2740-5. PubMed ID: 20222678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of anode and anolyte community growth and the impact of impedance in a microbial fuel cell.
    Sanchez-Herrera D; Pacheco-Catalan D; Valdez-Ojeda R; Canto-Canche B; Dominguez-Benetton X; Domínguez-Maldonado J; Alzate-Gaviria L
    BMC Biotechnol; 2014 Dec; 14():102. PubMed ID: 25487741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy.
    He Z; Wagner N; Minteer SD; Angenent LT
    Environ Sci Technol; 2006 Sep; 40(17):5212-7. PubMed ID: 16999091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical characterization of microbial bioanodes formed on a collector/electrode system in a highly saline electrolyte.
    Rousseau R; Rimboud M; Délia ML; Bergel A; Basséguy R
    Bioelectrochemistry; 2015 Dec; 106(Pt A):97-104. PubMed ID: 26145814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes.
    Aelterman P; Versichele M; Marzorati M; Boon N; Verstraete W
    Bioresour Technol; 2008 Dec; 99(18):8895-902. PubMed ID: 18524577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of microbial fuel cells at microbially and electrochemically meaningful time scales.
    Ren Z; Yan H; Wang W; Mench MM; Regan JM
    Environ Sci Technol; 2011 Mar; 45(6):2435-41. PubMed ID: 21329346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison in performance of sediment microbial fuel cells according to depth of embedded anode.
    An J; Kim B; Nam J; Ng HY; Chang IS
    Bioresour Technol; 2013 Jan; 127():138-42. PubMed ID: 23131634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.