These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25869139)

  • 1. Metabotropic Glutamate Receptors: MODULATORS OF CONTEXT-DEPENDENT FEEDING BEHAVIOUR IN C. ELEGANS.
    Dillon J; Franks CJ; Murray C; Edwards RJ; Calahorro F; Ishihara T; Katsura I; Holden-Dye L; O'Connor V
    J Biol Chem; 2015 Jun; 290(24):15052-65. PubMed ID: 25869139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast two-hybrid screening identifies MPZ-1 and PTP-1 as candidate scaffolding proteins of metabotropic glutamate receptors in Caenorhabditis elegans.
    Dillon J; Holden-Dye L; O'Connor V
    Invert Neurosci; 2018 Nov; 18(4):16. PubMed ID: 30417267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of the metabotropic glutamate receptor family in Caenorhabditis elegans.
    Dillon J; Hopper NA; Holden-Dye L; O'Connor V
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):942-8. PubMed ID: 17052233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthosteric and allosteric drug binding sites in the Caenorhabditis elegans mgl-2 metabotropic glutamate receptor.
    Tharmalingam S; Burns AR; Roy PJ; Hampson DR
    Neuropharmacology; 2012 Sep; 63(4):667-74. PubMed ID: 22652059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of metabotropic glutamate receptor homolog(s) accelerates acetylcholine neurotransmission in Caenorhabditis elegans.
    Sadananda G; Subramaniam JR
    Neurosci Lett; 2021 Feb; 746():135666. PubMed ID: 33493646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroligin tuning of pharyngeal pumping reveals extrapharyngeal modulation of feeding in
    Calahorro F; Keefe F; Dillon J; Holden-Dye L; O'Connor V
    J Exp Biol; 2019 Feb; 222(Pt 3):. PubMed ID: 30559302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5.
    Katz M; Corson F; Keil W; Singhal A; Bae A; Lu Y; Liang Y; Shaham S
    Nat Commun; 2019 Apr; 10(1):1882. PubMed ID: 31015396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Optogenetic Stimulation of Individual Pharyngeal Neurons and Monitoring of Feeding Behavior in Intact C. elegans.
    Trojanowski NF; Fang-Yen C
    Methods Mol Biol; 2015; 1327():105-19. PubMed ID: 26423971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system.
    Trojanowski NF; Raizen DM; Fang-Yen C
    Sci Rep; 2016 Mar; 6():22940. PubMed ID: 26976078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans.
    Dillon J; Holden-Dye L; O'Connor V; Hopper NA
    Invert Neurosci; 2016 Jun; 16(2):4. PubMed ID: 27209024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural and genetic degeneracy underlies Caenorhabditis elegans feeding behavior.
    Trojanowski NF; Padovan-Merhar O; Raizen DM; Fang-Yen C
    J Neurophysiol; 2014 Aug; 112(4):951-61. PubMed ID: 24872529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonergic modulation of feeding behavior in Caenorhabditis elegans and other related nematodes.
    Ishita Y; Chihara T; Okumura M
    Neurosci Res; 2020 May; 154():9-19. PubMed ID: 31028772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systemic regulation of starvation response in Caenorhabditis elegans.
    Kang C; Avery L
    Genes Dev; 2009 Jan; 23(1):12-7. PubMed ID: 19136622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AutoEPG: software for the analysis of electrical activity in the microcircuit underpinning feeding behaviour of Caenorhabditis elegans.
    Dillon J; Andrianakis I; Bull K; Glautier S; O'Connor V; Holden-Dye L; James C
    PLoS One; 2009 Dec; 4(12):e8482. PubMed ID: 20041123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMPK acts as a molecular trigger to coordinate glutamatergic signals and adaptive behaviours during acute starvation.
    Ahmadi M; Roy R
    Elife; 2016 Sep; 5():. PubMed ID: 27642785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic Perturbation of Individual C. elegans Pharyngeal Neurons While Monitoring Feeding Behavior.
    Trojanowski NF; Fang-Yen C
    Methods Mol Biol; 2022; 2468():117-131. PubMed ID: 35320563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serotonin activates overall feeding by activating two separate neural pathways in Caenorhabditis elegans.
    Song BM; Avery L
    J Neurosci; 2012 Feb; 32(6):1920-31. PubMed ID: 22323705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple excitatory and inhibitory neural signals converge to fine-tune Caenorhabditis elegans feeding to food availability.
    Dallière N; Bhatla N; Luedtke Z; Ma DK; Woolman J; Walker RJ; Holden-Dye L; O'Connor V
    FASEB J; 2016 Feb; 30(2):836-48. PubMed ID: 26514165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actions of glutamate and ivermectin on the pharyngeal muscle of Ascaridia galli: a comparative study with Caenorhabditis elegans.
    Holden-Dye L; Walker RJ
    Int J Parasitol; 2006 Apr; 36(4):395-402. PubMed ID: 16442540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food responsiveness regulates episodic behavioral states in
    McCloskey RJ; Fouad AD; Churgin MA; Fang-Yen C
    J Neurophysiol; 2017 May; 117(5):1911-1934. PubMed ID: 28228583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.