BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25869214)

  • 1. Selective and Reversible Binding of Thiol-Functionalized Biomolecules on Polymers Prepared via Chemical Vapor Deposition Polymerization.
    Ross A; Durmaz H; Cheng K; Deng X; Liu Y; Oh J; Chen Z; Lahann J
    Langmuir; 2015 May; 31(18):5123-9. PubMed ID: 25869214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designable biointerfaces using vapor-based reactive polymers.
    Chen HY; Lahann J
    Langmuir; 2011 Jan; 27(1):34-48. PubMed ID: 20590103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films.
    Kumar R; Welle A; Becker F; Kopyeva I; Lahann J
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):31965-31976. PubMed ID: 30180547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of confined microgeometries via vapor-deposited polymer coatings.
    Chen HY; Elkasabi Y; Lahann J
    J Am Chem Soc; 2006 Jan; 128(1):374-80. PubMed ID: 16390168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocomposite microstructures with tunable mechanical and chemical properties.
    Tawfick S; Deng X; Hart AJ; Lahann J
    Phys Chem Chem Phys; 2010 May; 12(17):4446-51. PubMed ID: 20407718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding.
    Gandhiraman RP; Gubala V; Le NC; Volcke C; Doyle C; James B; Daniels S; Williams DE
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):270-5. PubMed ID: 20452191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polylutidines: Multifunctional Surfaces through Vapor-Based Polymerization of Substituted Pyridinophanes.
    Bally-Le Gall F; Hussal C; Kramer J; Cheng K; Kumar R; Eyster T; Baek A; Trouillet V; Nieger M; Bräse S; Lahann J
    Chemistry; 2017 Sep; 23(54):13342-13350. PubMed ID: 28644514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vapor-based polymer gradients.
    Elkasabi Y; Lahann J
    Macromol Rapid Commun; 2009 Jan; 30(1):57-63. PubMed ID: 21706539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive polymer coatings: a general route to thiol-ene and thiol-yne click reactions.
    Wu JT; Huang CH; Liang WC; Wu YL; Yu J; Chen HY
    Macromol Rapid Commun; 2012 May; 33(10):922-7. PubMed ID: 22351376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity.
    Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN
    Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinstructive Coatings for Hematopoietic Stem Cell Expansion Based on Chemical Vapor Deposition Copolymerization.
    Winkler AL; Koenig M; Welle A; Trouillet V; Kratzer D; Hussal C; Lahann J; Lee-Thedieck C
    Biomacromolecules; 2017 Oct; 18(10):3089-3098. PubMed ID: 28767236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical-vapor-deposition-based polymer substrates for spatially resolved analysis of protein binding by imaging ellipsometry.
    Ross AM; Zhang D; Deng X; Chang SL; Lahann J
    Anal Chem; 2011 Feb; 83(3):874-80. PubMed ID: 21226461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of siliceous materials using maleimidation and various functional polymers synthesized by reversible addition-fragmentation chain transfer polymerization.
    Seto H; Takara M; Yamashita C; Murakami T; Hasegawa T; Hoshino Y; Miura Y
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5125-33. PubMed ID: 23013607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vapor-deposited parylene photoresist: a multipotent approach toward chemically and topographically defined biointerfaces.
    Wu MG; Hsu HL; Hsiao KW; Hsieh CC; Chen HY
    Langmuir; 2012 Oct; 28(40):14313-22. PubMed ID: 22966949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification of polymer brushes via nitroxide photoclick trapping.
    Mardyukov A; Li Y; Dickschat A; Schäfer AH; Studer A
    Langmuir; 2013 May; 29(21):6369-76. PubMed ID: 23675823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A substrate-independent method for surface grafting polymer layers by atom transfer radical polymerization: reduction of protein adsorption.
    Coad BR; Lu Y; Meagher L
    Acta Biomater; 2012 Feb; 8(2):608-18. PubMed ID: 22023749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic anchor for surface-initiated polymerization from metal substrates.
    Fan X; Lin L; Dalsin JL; Messersmith PB
    J Am Chem Soc; 2005 Nov; 127(45):15843-7. PubMed ID: 16277527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive epoxy-functionalized thin films by a pulsed plasma polymerization process.
    Thierry B; Jasieniak M; de Smet LC; Vasilev K; Griesser HJ
    Langmuir; 2008 Sep; 24(18):10187-95. PubMed ID: 18680384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface "click" chemistry on brominated plasma polymer thin films.
    Chen RT; Muir BW; Such GK; Postma A; Evans RA; Pereira SM; McLean KM; Caruso F
    Langmuir; 2010 Mar; 26(5):3388-93. PubMed ID: 19902911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.