These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Synthesis, magnetostructural correlation, and catalytic promiscuity of unsymmetric dinuclear copper(II) complexes: models for catechol oxidases and hydrolases. Osório RE; Peralta RA; Bortoluzzi AJ; de Almeida VR; Szpoganicz B; Fischer FL; Terenzi H; Mangrich AS; Mantovani KM; Ferreira DE; Rocha WR; Haase W; Tomkowicz Z; dos Anjos A; Neves A Inorg Chem; 2012 Feb; 51(3):1569-89. PubMed ID: 22260179 [TBL] [Abstract][Full Text] [Related]
24. Copper complexes relevant to the catalytic cycle of copper nitrite reductase: electrochemical detection of NO(g) evolution and flipping of NO2 binding mode upon Cu(II) → Cu(I) reduction. Maji RC; Barman SK; Roy S; Chatterjee SK; Bowles FL; Olmstead MM; Patra AK Inorg Chem; 2013 Oct; 52(19):11084-95. PubMed ID: 24066957 [TBL] [Abstract][Full Text] [Related]
25. Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties. Neves A; Rossi LM; Bortoluzzi AJ; Szpoganicz B; Wiezbicki C; Schwingel E; Haase W; Ostrovsky S Inorg Chem; 2002 Apr; 41(7):1788-94. PubMed ID: 11925171 [TBL] [Abstract][Full Text] [Related]
26. A novel 1,3,5-triaminocyclohexane-based tripodal ligand forms a unique tetra(pyrazolate)-bridged tricopper(ii) core: solution equilibrium, structure and catecholase activity. Szorcsik A; Matyuska F; Bényei A; Nagy NV; Szilágyi RK; Gajda T Dalton Trans; 2016 Oct; 45(38):14998-5012. PubMed ID: 27559827 [TBL] [Abstract][Full Text] [Related]
27. Models for biological trinuclear copper clusters. Characterization and enantioselective catalytic oxidation of catechols by the copper(II) complexes of a chiral ligand derived from (S)-(-)-1,1'-binaphthyl-2,2'-diamine. Mimmi MC; Gullotti M; Santagostini L; Battaini G; Monzani E; Pagliarin R; Zoppellaro G; Casella L Dalton Trans; 2004 Jul; (14):2192-201. PubMed ID: 15249957 [TBL] [Abstract][Full Text] [Related]
28. Unveiling the effects of the in situ generated arene anion radical and imine radical on catecholase like activity: a DFT supported experimental investigation. Dasgupta S; Adhikary J; Giri S; Bauza A; Frontera A; Das D Dalton Trans; 2017 May; 46(18):5888-5900. PubMed ID: 28402374 [TBL] [Abstract][Full Text] [Related]
29. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination. Mandal S; Mukherjee J; Lloret F; Mukherjee R Inorg Chem; 2012 Dec; 51(24):13148-61. PubMed ID: 23194383 [TBL] [Abstract][Full Text] [Related]
30. Design and catalytic studies of structural and functional models of the catechol oxidase enzyme. Terán A; Jaafar A; Sánchez-Peláez AE; Torralba MC; Gutiérrez Á J Biol Inorg Chem; 2020 Jun; 25(4):671-683. PubMed ID: 32367388 [TBL] [Abstract][Full Text] [Related]
31. Dopamine polymerization promoted by a catecholase biomimetic Cu de Oliveira JA; da Silva MP; de Souza B; Camargo TP; Szpoganicz B; Neves A; Bortoluzzi AJ Dalton Trans; 2016 Oct; 45(39):15294-15297. PubMed ID: 27722365 [TBL] [Abstract][Full Text] [Related]
32. Ligand centered radical pathway in catechol oxidase activity with a trinuclear zinc-based model: synthesis, structural characterization and luminescence properties. Pal S; Chowdhury B; Patra M; Maji M; Biswas B Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():148-54. PubMed ID: 25754390 [TBL] [Abstract][Full Text] [Related]
33. Hydroxide-bridged dicopper complexes: the influence of secondary coordination sphere on structure and catecholase activity. Bansal D; Gupta R Dalton Trans; 2017 Apr; 46(14):4617-4627. PubMed ID: 28327738 [TBL] [Abstract][Full Text] [Related]
34. Bioinspired copper(I) complexes that exhibit monooxygenase and catechol dioxygenase activity. Arnold A; Metzinger R; Limberg C Chemistry; 2015 Jan; 21(3):1198-207. PubMed ID: 25395055 [TBL] [Abstract][Full Text] [Related]
35. Preparation of Cu@Cu₂O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol. Jang S; Yoon C; Lee JM; Park S; Park KH Molecules; 2016 Nov; 21(11):. PubMed ID: 27827865 [TBL] [Abstract][Full Text] [Related]
36. Synthesis, spectroscopy, and binding constants of ketocatechol-containing iminodiacetic acid and its Fe(III), Cu(II), and Zn(II) complexes and reaction of Cu(II) complex with H₂O₂ in aqueous solution. Gao J; Xing F; Bai Y; Zhu S Dalton Trans; 2014 Jun; 43(21):7964-78. PubMed ID: 24715002 [TBL] [Abstract][Full Text] [Related]
37. Synthesis, structure, redox properties and azide binding for a series of biphenyl-based Cu(II) complexes. Chen J; Russo R; Chao W; Margerum LD; Malachowski MR; White R; Thawley Z; Thayer A; Rheingold AL; Zakharov LN Dalton Trans; 2007 Jun; (24):2571-9. PubMed ID: 17563793 [TBL] [Abstract][Full Text] [Related]
38. Structural, magnetic, electrochemical, catalytic, DNA binding and cleavage studies of new macrocyclic binuclear copper(II) complexes. Anbu S; Kandaswamy M; Suthakaran P; Murugan V; Varghese B J Inorg Biochem; 2009 Mar; 103(3):401-10. PubMed ID: 19187967 [TBL] [Abstract][Full Text] [Related]
39. Facile synthesis of a new Cu(ii) complex with an unsymmetrical ligand and its use as an O Dutta S; Mayans J; Ghosh A Dalton Trans; 2020 Jan; 49(4):1276-1291. PubMed ID: 31909778 [TBL] [Abstract][Full Text] [Related]
40. Thioether sulfur-bound [Cu Das M; Afsan Z; Basak D; Arjmand F; Ray D Dalton Trans; 2019 Jan; 48(4):1292-1313. PubMed ID: 30608086 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]