BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 25869491)

  • 21. Melatonin modulates permeability transition pore and 5-hydroxydecanoate induced K
    Waseem M; Tabassum H; Parvez S
    Mitochondrion; 2016 Nov; 31():1-8. PubMed ID: 27535111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Data supporting the involvement of the adenine nucleotide translocase conformation in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.
    Korotkov SM
    Data Brief; 2016 Jun; 7():620-9. PubMed ID: 27054168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Tl
    Korotkov SM
    Biometals; 2021 Oct; 34(5):987-1006. PubMed ID: 34236558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atractyloside and 5-hydroxydecanoate block the protective effect of puerarin in isolated rat heart.
    Gao Q; Pan HY; Qiu S; Lu Y; Bruce IC; Luo JH; Xia Q
    Life Sci; 2006 Jun; 79(3):217-24. PubMed ID: 16458326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Joint Influence of Tl
    Korotkov SM; Novozhilov AV
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria.
    Kowaltowski AJ; Seetharaman S; Paucek P; Garlid KD
    Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H649-57. PubMed ID: 11158963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria.
    Das M; Parker JE; Halestrap AP
    J Physiol; 2003 Mar; 547(Pt 3):893-902. PubMed ID: 12562892
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [New fluorine-containing openers of ATP-sensitive potassium channels flokalin and tioflokalin inhibit calcium-induced mitochondrial pore opening in rat hearts].
    Strutyns'ka NA; Strutyns'kyĭ RB; Chorna SV; Semenykhina OM; Mys' LA; Moĭbenko OO; Sahach VF
    Fiziol Zh (1994); 2013; 59(6):3-11. PubMed ID: 24605585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells.
    Akao M; Ohler A; O'Rourke B; Marbán E
    Circ Res; 2001 Jun; 88(12):1267-75. PubMed ID: 11420303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of oxygen consumption in skeletal muscle-derived mitochondria by pinacidil, diazoxide, and glibenclamide, but not by 5-hydroxydecanoate.
    Montoya-Pérez R; Saavedra-Molina A; Trujillo X; Huerta M; Andrade F; Sánchez-Pastor E; Ortiz M
    J Bioenerg Biomembr; 2010 Feb; 42(1):21-7. PubMed ID: 20066482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The neuroprotection conferred by activating the mitochondrial ATP-sensitive K+ channel is mediated by inhibiting the mitochondrial permeability transition pore.
    Wu L; Shen F; Lin L; Zhang X; Bruce IC; Xia Q
    Neurosci Lett; 2006 Jul; 402(1-2):184-9. PubMed ID: 16678347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale.
    Akopova O; Kolchinskaya L; Nosar V; Mankovska I; Sagach V
    BMC Mol Cell Biol; 2020 Apr; 21(1):31. PubMed ID: 32306897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling.
    Dröse S; Brandt U; Hanley PJ
    J Biol Chem; 2006 Aug; 281(33):23733-9. PubMed ID: 16709571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Vitamin C in Cardioprotection of Ischemia/Reperfusion Injury by Activation of Mitochondrial KATP Channel.
    Hao J; Li WW; Du H; Zhao ZF; Liu F; Lu JC; Yang XC; Cui W
    Chem Pharm Bull (Tokyo); 2016; 64(6):548-57. PubMed ID: 27250789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Respiratory uncoupling by increased H(+) or K(+) flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition.
    Morota S; Piel S; Hansson MJ
    BMC Cell Biol; 2013 Sep; 14():40. PubMed ID: 24053891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability.
    Briston T; Roberts M; Lewis S; Powney B; M Staddon J; Szabadkai G; Duchen MR
    Sci Rep; 2017 Sep; 7(1):10492. PubMed ID: 28874733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diazoxide protects against methylmalonate-induced neuronal toxicity.
    Kowaltowski AJ; Maciel EN; Fornazari M; Castilho RF
    Exp Neurol; 2006 Sep; 201(1):165-71. PubMed ID: 16740260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ca(2+)-dependent nonspecific permeability of the inner membrane of liver mitochondria in the guinea fowl (Numida meleagris).
    Vedernikov AA; Dubinin MV; Zabiakin VA; Samartsev VN
    J Bioenerg Biomembr; 2015 Jun; 47(3):235-42. PubMed ID: 25690874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5-hydroxydecanoate.
    Jabůrek M; Yarov-Yarovoy V; Paucek P; Garlid KD
    J Biol Chem; 1998 May; 273(22):13578-82. PubMed ID: 9593694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.