These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 25869540)

  • 1. Configuration interaction singles based on the real-space numerical grid method: Kohn-Sham versus Hartree-Fock orbitals.
    Kim J; Hong K; Choi S; Hwang SY; Youn Kim W
    Phys Chem Chem Phys; 2015 Dec; 17(47):31434-43. PubMed ID: 25869540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outstanding performance of configuration interaction singles and doubles using exact exchange Kohn-Sham orbitals in real-space numerical grid method.
    Lim J; Choi S; Kim J; Kim WY
    J Chem Phys; 2016 Dec; 145(22):224309. PubMed ID: 27984905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct mapping between exchange potentials of Hartree-Fock and Kohn-Sham schemes as origin of orbital proximity.
    Cinal M
    J Chem Phys; 2010 Jan; 132(1):014101. PubMed ID: 20078143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies.
    Baerends EJ; Gritsenko OV; van Meer R
    Phys Chem Chem Phys; 2013 Oct; 15(39):16408-25. PubMed ID: 24002107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Hartree-Fock and Kohn-Sham orbitals in the basis set superposition error for systems linked by hydrogen bonds.
    Garza J; Ramírez JZ; Vargas R
    J Phys Chem A; 2005 Feb; 109(4):643-51. PubMed ID: 16833391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between exchange-only optimized potential and Kohn-Sham methods with finite basis sets, and effect of linearly dependent products of orbital basis functions.
    Görling A; Hesselmann A; Jones M; Levy M
    J Chem Phys; 2008 Mar; 128(10):104104. PubMed ID: 18345874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules.
    Choi S; Hong K; Kim J; Kim WY
    J Chem Phys; 2015 Mar; 142(9):094116. PubMed ID: 25747070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-hybrid density functional theory for excited electronic states of molecules.
    Grimme S; Neese F
    J Chem Phys; 2007 Oct; 127(15):154116. PubMed ID: 17949141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of coupled cluster electronic properties on the reference determinant: Can Kohn-Sham orbitals be more beneficial than Hartree-Fock orbitals?
    Benedek Z; Timár P; Szilvási T; Barcza G
    J Comput Chem; 2022 Dec; 43(32):2103-2120. PubMed ID: 36200186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural excitation orbitals from linear response theories: Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Phys; 2017 Jan; 146(4):044119. PubMed ID: 28147540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local orbitals by minimizing powers of the orbital variance.
    Jansík B; Høst S; Kristensen K; Jørgensen P
    J Chem Phys; 2011 May; 134(19):194104. PubMed ID: 21599041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Away from generalized gradient approximation: orbital-dependent exchange-correlation functionals.
    Baerends EJ; Gritsenko OV
    J Chem Phys; 2005 Aug; 123(6):62202. PubMed ID: 16122288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation energies from particle-particle random phase approximation with accurate optimized effective potentials.
    Jin Y; Yang Y; Zhang D; Peng D; Yang W
    J Chem Phys; 2017 Oct; 147(13):134105. PubMed ID: 28987104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Electron Affinity as the Highest Occupied Anion Orbital Energy with a Sufficiently Accurate Approximation of the Exact Kohn-Sham Potential.
    Amati M; Stoia S; Baerends EJ
    J Chem Theory Comput; 2020 Jan; 16(1):443-452. PubMed ID: 31794657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchy of model Kohn-Sham potentials for orbital-dependent functionals: a practical alternative to the optimized effective potential method.
    Kohut SV; Ryabinkin IG; Staroverov VN
    J Chem Phys; 2014 May; 140(18):18A535. PubMed ID: 24832343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communication: Adjusting charge transfer state energies for configuration interaction singles: without any parameterization and with minimal cost.
    Liu X; Fatehi S; Shao Y; Veldkamp BS; Subotnik JE
    J Chem Phys; 2012 Apr; 136(16):161101. PubMed ID: 22559462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate and efficient approximation to the optimized effective potential for exchange.
    Ryabinkin IG; Kananenka AA; Staroverov VN
    Phys Rev Lett; 2013 Jul; 111(1):013001. PubMed ID: 23862997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Average local ionization energies in the Hartree-Fock and Kohn-Sham theories.
    Bulat FA; Levy M; Politzer P
    J Phys Chem A; 2009 Feb; 113(7):1384-9. PubMed ID: 19170562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.