BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 25869590)

  • 1. Biochemical characterization of the roles of glycines 24 and 27 and threonine 179 in tropomyosin from the fast skeletal trunk muscle of the atlantic salmon.
    Fudge KR; Heeley DH
    Biochemistry; 2015 May; 54(17):2769-76. PubMed ID: 25869590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Threonine-77 Is a Determinant of the Low-Temperature Conditioning of the Most Abundant Isoform of Tropomyosin in Atlantic Salmon.
    Silva AMM; Ige T; Goonasekara CL; Heeley DH
    Biochemistry; 2020 Aug; 59(31):2859-2869. PubMed ID: 32686411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of beta-tropomyosin (Tpm2) and duplication of the alpha-slow tropomyosin gene (TPM3) in Atlantic salmon Salmo salar.
    Silva AMM; Kennedy LS; Hasan SC; Cohen AM; Heeley DH
    Comp Biochem Physiol B Biochem Mol Biol; 2020 Jul; 245():110439. PubMed ID: 32283206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational properties of striated muscle tropomyosins from some salmonid fishes.
    Goonasekara CL; Heeley DH
    J Muscle Res Cell Motil; 2008; 29(2-5):135-43. PubMed ID: 19011975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical Comparison of Tpm1.1 (α) and Tpm2.2 (β) Tropomyosins from Rabbit Skeletal Muscle.
    Lohmeier-Vogel EM; Heeley DH
    Biochemistry; 2016 Mar; 55(9):1418-27. PubMed ID: 26863527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold adaptation of tropomyosin.
    Hayley M; Chevaldina T; Heeley DH
    Biochemistry; 2011 Aug; 50(30):6559-66. PubMed ID: 21707054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of removing the amino-terminal hexapeptide of tropomyosin on the properties of the thin filament.
    Goonasekara CL; Heeley DH
    Biochemistry; 2009 Apr; 48(15):3538-44. PubMed ID: 19152500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of fast, slow and cardiac muscle tropomyosins from salmonid fish.
    Heeley DH; Bieger T; Waddleton DM; Hong C; Jackman DM; McGowan C; Davidson WS; Beavis RC
    Eur J Biochem; 1995 Aug; 232(1):226-34. PubMed ID: 7556155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some binding properties of Omp T digested muscle tropomyosin.
    Goonasekara CL; Gallivan LJ; Jackman DM; Heeley DH
    J Muscle Res Cell Motil; 2007; 28(2-3):175-82. PubMed ID: 17805980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further characterisation of fast, slow and cardiac muscle tropomyosins from salmonid fish.
    Jackman DM; Waddleton DM; Younghusband B; Heeley DH
    Eur J Biochem; 1996 Dec; 242(2):363-71. PubMed ID: 8973655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The second half of the fourth period of tropomyosin is a key region for Ca(2+)-dependent regulation of striated muscle thin filaments.
    Sakuma A; Kimura-Sakiyama C; Onoue A; Shitaka Y; Kusakabe T; Miki M
    Biochemistry; 2006 Aug; 45(31):9550-8. PubMed ID: 16878989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of two hypertrophic cardiomyopathy mutations in alpha-tropomyosin, Asp175Asn and Glu180Gly, on Ca2+ regulation of thin filament motility.
    Bing W; Redwood CS; Purcell IF; Esposito G; Watkins H; Marston SB
    Biochem Biophys Res Commun; 1997 Jul; 236(3):760-4. PubMed ID: 9245729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of skeletal muscle myosin-II and brush border myosin-I enzymology and mechanochemistry by bacterially produced tropomyosin isoforms.
    Fanning AS; Wolenski JS; Mooseker MS; Izant JG
    Cell Motil Cytoskeleton; 1994; 29(1):29-45. PubMed ID: 7820856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence resonance energy transfer between residues on troponin and tropomyosin in the reconstituted thin filament: modeling the troponin-tropomyosin complex.
    Kimura-Sakiyama C; Ueno Y; Wakabayashi K; Miki M
    J Mol Biol; 2008 Feb; 376(1):80-91. PubMed ID: 18155235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gly126Arg substitution causes anomalous behaviour of α-skeletal and β-smooth tropomyosins during the ATPase cycle.
    Rysev NA; Nevzorov IA; Avrova SV; Karpicheva OE; Redwood CS; Levitsky DI; Borovikov YS
    Arch Biochem Biophys; 2014 Feb; 543():57-66. PubMed ID: 24374033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tropomyosin-binding site(s) on the Dictyostelium actin surface as identified by site-directed mutagenesis.
    Saeki K; Sutoh K; Wakabayashi T
    Biochemistry; 1996 Nov; 35(46):14465-72. PubMed ID: 8931542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-terminal modification and its effect on the biochemical characteristics of Akazara scallop tropomyosins expressed in Escherichia coli.
    Inoue A; Ojima T; Nishita K
    J Biochem; 2004 Jul; 136(1):107-14. PubMed ID: 15269246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of two tropomyosin isoforms from the fast skeletal muscle of bluefin tuna Thunnus thynnusorientalis.
    Ochiai Y; Ozawa H; Huang MC; Watabe S
    Arch Biochem Biophys; 2010 Oct; 502(2):96-103. PubMed ID: 20646991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in fast skeletal troponin I, troponin T, and beta-tropomyosin that cause distal arthrogryposis all increase contractile function.
    Robinson P; Lipscomb S; Preston LC; Altin E; Watkins H; Ashley CC; Redwood CS
    FASEB J; 2007 Mar; 21(3):896-905. PubMed ID: 17194691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein.
    Greenfield NJ; Huang YJ; Palm T; Swapna GV; Monleon D; Montelione GT; Hitchcock-DeGregori SE
    J Mol Biol; 2001 Sep; 312(4):833-47. PubMed ID: 11575936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.