These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

813 related articles for article (PubMed ID: 25869741)

  • 1. Pantomime-grasping: the 'return' of haptic feedback supports the absolute specification of object size.
    Davarpanah Jazi S; Yau M; Westwood DA; Heath M
    Exp Brain Res; 2015 Jul; 233(7):2029-40. PubMed ID: 25869741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration.
    Hosang S; Chan J; Davarpanah Jazi S; Heath M
    Exp Brain Res; 2016 Apr; 234(4):945-54. PubMed ID: 26680769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic feedback attenuates illusory bias in pantomime-grasping: evidence for a visuo-haptic calibration.
    Chan J; Heath M
    Exp Brain Res; 2017 Apr; 235(4):1041-1051. PubMed ID: 28070622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spatial relations between stimulus and response determine an absolute visuo-haptic calibration in pantomime-grasping.
    Davarpanah Jazi S; Heath M
    Brain Cogn; 2017 Jun; 114():29-39. PubMed ID: 28346879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical constraints do not influence pantomime-grasping adherence to Weber's law: A reply to Utz et al. (2015).
    Manzone J; Davarpanah Jazi S; Whitwell RL; Heath M
    Vision Res; 2017 Jan; 130():31-35. PubMed ID: 27876512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tactile-Based Pantomime Grasping: Knowledge of Results is Not Enough to Support an Absolute Calibration.
    Heath M; Chan J; Davarpanah Jazi S
    J Mot Behav; 2019; 51(1):10-18. PubMed ID: 29236589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memory delay and haptic feedback influence the dissociation of tactile cues for perception and action.
    Davarpanah Jazi S; Hosang S; Heath M
    Neuropsychologia; 2015 May; 71():91-100. PubMed ID: 25796409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct visual cues mediate aperture shaping for grasping and pantomime-grasping tasks.
    Holmes SA; Lohmus J; McKinnon S; Mulla A; Heath M
    J Mot Behav; 2013; 45(5):431-9. PubMed ID: 23971991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weber's law in tactile grasping and manual estimation: feedback-dependent evidence for functionally distinct processing streams.
    Davarpanah Jazi S; Heath M
    Brain Cogn; 2014 Apr; 86():32-41. PubMed ID: 24556320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hand anthropometry and the limits of aperture separation determine the utility of Weber's law in grasping and manual estimation.
    Ayala N; Binsted G; Heath M
    Exp Brain Res; 2018 Aug; 236(8):2439-2446. PubMed ID: 29923096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pantomime-Grasping: Advance Knowledge of Haptic Feedback Availability Supports an Absolute Visuo-Haptic Calibration.
    Davarpanah Jazi S; Heath M
    Front Hum Neurosci; 2016; 10():197. PubMed ID: 27199718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visually and memory-guided grasping: aperture shaping exhibits a time-dependent scaling to Weber's law.
    Holmes SA; Mulla A; Binsted G; Heath M
    Vision Res; 2011 Sep; 51(17):1941-8. PubMed ID: 21777599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.
    Whitwell RL; Ganel T; Byrne CM; Goodale MA
    Front Hum Neurosci; 2015; 9():216. PubMed ID: 25999834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical factors may explain why grasping violates Weber's law.
    Utz KS; Hesse C; Aschenneller N; Schenk T
    Vision Res; 2015 Jun; 111(Pt A):22-30. PubMed ID: 25872174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct visual resolution supports aperture shaping in natural and pantomime-grasping.
    Heath M; Ayala N; Hamidi M; Tari B
    Can J Exp Psychol; 2022 Mar; 76(1):22-28. PubMed ID: 34694839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grasping trajectories in a virtual environment adhere to Weber's law.
    Ozana A; Berman S; Ganel T
    Exp Brain Res; 2018 Jun; 236(6):1775-1787. PubMed ID: 29663023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Goal-directed grasping: the dimensional properties of an object influence the nature of the visual information mediating aperture shaping.
    Holmes SA; Heath M
    Brain Cogn; 2013 Jun; 82(1):18-24. PubMed ID: 23501700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manual estimations of functionally graspable target objects adhere to Weber's law.
    Heath M; Manzone J
    Exp Brain Res; 2017 Jun; 235(6):1701-1707. PubMed ID: 28280878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The visual coding of grip aperture shows an early but not late adherence to Weber's law.
    Heath M; Mulla A; Holmes SA; Smuskowitz LR
    Neurosci Lett; 2011 Mar; 490(3):200-4. PubMed ID: 21194553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weber's law in 2D and 3D grasping.
    Ozana A; Ganel T
    Psychol Res; 2019 Jul; 83(5):977-988. PubMed ID: 28871420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.