These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25870127)

  • 1. Azimuthal sound localization in the European starling (Sturnus vulgaris): III. Comparison of sound localization measures.
    Feinkohl A; Borzeszkowski KM; Klump GM
    Hear Res; 2016 Feb; 332():238-248. PubMed ID: 25870127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of head turns on the localization accuracy of sounds in the European starling (Sturnus vulgaris).
    Feinkohl A; Borzeszkowski KM; Klump GM
    Behav Brain Res; 2013 Nov; 256():669-76. PubMed ID: 24035879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azimuthal sound localization in the European starling (Sturnus vulgaris): II. Psychophysical results.
    Feinkohl A; Klump GM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Feb; 199(2):127-38. PubMed ID: 23160796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can measures of sound localization acuity be related to the precision of absolute location estimates?
    Moore JM; Tollin DJ; Yin TC
    Hear Res; 2008 Apr; 238(1-2):94-109. PubMed ID: 18178351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of auditory recognition learning on the perception of vocal features in European starlings (Sturnus vulgaris).
    Meliza CD
    J Acoust Soc Am; 2011 Nov; 130(5):3115-23. PubMed ID: 22087940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of auditory localization accuracy and auditory spatial discrimination in children and adolescents.
    Kühnle S; Ludwig AA; Meuret S; Küttner C; Witte C; Scholbach J; Fuchs M; Rübsamen R
    Audiol Neurootol; 2013; 18(1):48-62. PubMed ID: 23095333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory localization accuracy and auditory spatial discrimination in children with auditory processing disorders.
    Ludwig AA; Zeug M; Schönwiesner M; Fuchs M; Meuret S
    Hear Res; 2019 Jun; 377():282-291. PubMed ID: 31029039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous comparison of two sound localization measures.
    Jones AE; Ruhland JL; Gai Y; Yin TC
    Hear Res; 2014 Nov; 317():33-40. PubMed ID: 25261773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the right parietal cortex in sound localization: a chronometric single pulse transcranial magnetic stimulation study.
    At A; Spierer L; Clarke S
    Neuropsychologia; 2011 Jul; 49(9):2794-7. PubMed ID: 21679720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory memory: a comparison between humans and starlings.
    Zokoll MA; Naue N; Herrmann CS; Langemann U
    Brain Res; 2008 Jul; 1220():33-46. PubMed ID: 18291352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of preceding stimulation on sound localization and its representation in the auditory midbrain.
    Tolnai S; Beutelmann R; Klump GM
    Eur J Neurosci; 2017 Feb; 45(3):460-471. PubMed ID: 27891687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and discrimination of simulated motion of auditory targets in the horizontal plane.
    Grantham DW
    J Acoust Soc Am; 1986 Jun; 79(6):1939-49. PubMed ID: 3722604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilateral cochlear implants in children: localization acuity measured with minimum audible angle.
    Litovsky RY; Johnstone PM; Godar S; Agrawal S; Parkinson A; Peters R; Lake J
    Ear Hear; 2006 Feb; 27(1):43-59. PubMed ID: 16446564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the minimum audible angle--a decision theory approach.
    Hartmann WM; Raked B
    J Acoust Soc Am; 1989 May; 85(5):2031-41. PubMed ID: 2732384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat.
    Malhotra S; Lomber SG
    J Neurophysiol; 2007 Jan; 97(1):26-43. PubMed ID: 17035367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sound-localization ability of the Mongolian gerbil (Meriones unguiculatus) in a task with a simplified response map.
    Carney LH; Sarkar S; Abrams KS; Idrobo F
    Hear Res; 2011 May; 275(1-2):89-95. PubMed ID: 21147208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of spatial adaptation on auditory motion processing.
    Getzmann S; Lewald J
    Hear Res; 2011 Feb; 272(1-2):21-9. PubMed ID: 21108997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of mouse minimum audible angle determined in prepulse inhibition and operant conditioning procedures.
    Behrens D; Klump GM
    Hear Res; 2016 Mar; 333():167-178. PubMed ID: 26807797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between auditory 'what' and 'where' pathways revealed by enhanced near-threshold discrimination of frequency and position.
    Tardif E; Spierer L; Clarke S; Murray MM
    Neuropsychologia; 2008 Mar; 46(4):958-66. PubMed ID: 18191423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimum audible angle thresholds for broadband noise as a function of the delay between the onset of the lead and lag signals.
    Perrott DR; Pacheco S
    J Acoust Soc Am; 1989 Jun; 85(6):2669-72. PubMed ID: 2745886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.