These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 25870223)
21. Comparison of synthetic mammography, reconstructed from digital breast tomosynthesis, and digital mammography: evaluation of lesion conspicuity and BI-RADS assessment categories. Mariscotti G; Durando M; Houssami N; Fasciano M; Tagliafico A; Bosco D; Casella C; Bogetti C; Bergamasco L; Fonio P; Gandini G Breast Cancer Res Treat; 2017 Dec; 166(3):765-773. PubMed ID: 28819781 [TBL] [Abstract][Full Text] [Related]
23. Detection and Segmentation of Pectoral Muscle on MLO-View Mammogram Using Enhancement Filter. Vikhe PS; Thool VR J Med Syst; 2017 Oct; 41(12):190. PubMed ID: 29071592 [TBL] [Abstract][Full Text] [Related]
24. Pectoral muscle segmentation: a review. Ganesan K; Acharya UR; Chua KC; Min LC; Abraham KT Comput Methods Programs Biomed; 2013 Apr; 110(1):48-57. PubMed ID: 23270962 [TBL] [Abstract][Full Text] [Related]
25. Automated volumetric breast density measures: differential change between breasts in women with and without breast cancer. Brandt KR; Scott CG; Miglioretti DL; Jensen MR; Mahmoudzadeh AP; Hruska C; Ma L; Wu FF; Cummings SR; Norman AD; Engmann NJ; Shepherd JA; Winham SJ; Kerlikowske K; Vachon CM Breast Cancer Res; 2019 Oct; 21(1):118. PubMed ID: 31660981 [TBL] [Abstract][Full Text] [Related]
26. Case-control study of mammographic density and breast cancer risk using processed digital mammograms. Habel LA; Lipson JA; Achacoso N; Rothstein JH; Yaffe MJ; Liang RY; Acton L; McGuire V; Whittemore AS; Rubin DL; Sieh W Breast Cancer Res; 2016 May; 18(1):53. PubMed ID: 27209070 [TBL] [Abstract][Full Text] [Related]
27. Predicting interval and screen-detected breast cancers from mammographic density defined by different brightness thresholds. Nguyen TL; Aung YK; Li S; Trinh NH; Evans CF; Baglietto L; Krishnan K; Dite GS; Stone J; English DR; Song YM; Sung J; Jenkins MA; Southey MC; Giles GG; Hopper JL Breast Cancer Res; 2018 Dec; 20(1):152. PubMed ID: 30545395 [TBL] [Abstract][Full Text] [Related]
28. Breast cancer risk analysis based on a novel segmentation framework for digital mammograms. Chen X; Moschidis E; Taylor C; Astley S Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):536-43. PubMed ID: 25333160 [TBL] [Abstract][Full Text] [Related]
29. Review of recent advances in segmentation of the breast boundary and the pectoral muscle in mammograms. Mustra M; Grgic M; Rangayyan RM Med Biol Eng Comput; 2016 Jul; 54(7):1003-24. PubMed ID: 26546074 [TBL] [Abstract][Full Text] [Related]
30. A robust method for segmenting pectoral muscle in mediolateral oblique (MLO) mammograms. Yin K; Yan S; Song C; Zheng B Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):237-248. PubMed ID: 30288698 [TBL] [Abstract][Full Text] [Related]
31. Mammography image quality: model for predicting compliance with posterior nipple line criterion. Spuur K; Hung WT; Poulos A; Rickard M Eur J Radiol; 2011 Dec; 80(3):713-8. PubMed ID: 20621431 [TBL] [Abstract][Full Text] [Related]
32. Digital breast tomosynthesis versus full-field digital mammography: comparison of the accuracy of lesion measurement and characterization using specimens. Seo N; Kim HH; Shin HJ; Cha JH; Kim H; Moon JH; Gong G; Ahn SH; Son BH Acta Radiol; 2014 Jul; 55(6):661-7. PubMed ID: 24005560 [TBL] [Abstract][Full Text] [Related]
33. Computer-aided identification of the pectoral muscle in digitized mammograms. Camilus KS; Govindan VK; Sathidevi PS J Digit Imaging; 2010 Oct; 23(5):562-80. PubMed ID: 19816741 [TBL] [Abstract][Full Text] [Related]
34. Breast cancer: missed interval and screening-detected cancer at full-field digital mammography and screen-film mammography-- results from a retrospective review. Hoff SR; Abrahamsen AL; Samset JH; Vigeland E; Klepp O; Hofvind S Radiology; 2012 Aug; 264(2):378-86. PubMed ID: 22700555 [TBL] [Abstract][Full Text] [Related]
35. A novel and fully automated mammographic texture analysis for risk prediction: results from two case-control studies. Wang C; Brentnall AR; Cuzick J; Harkness EF; Evans DG; Astley S Breast Cancer Res; 2017 Oct; 19(1):114. PubMed ID: 29047382 [TBL] [Abstract][Full Text] [Related]
36. Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm. Heidari M; Khuzani AZ; Hollingsworth AB; Danala G; Mirniaharikandehei S; Qiu Y; Liu H; Zheng B Phys Med Biol; 2018 Jan; 63(3):035020. PubMed ID: 29239858 [TBL] [Abstract][Full Text] [Related]
37. Automatic Estimation of Volumetric Breast Density Using Artificial Neural Network-Based Calibration of Full-Field Digital Mammography: Feasibility on Japanese Women With and Without Breast Cancer. Wang J; Kato F; Yamashita H; Baba M; Cui Y; Li R; Oyama-Manabe N; Shirato H J Digit Imaging; 2017 Apr; 30(2):215-227. PubMed ID: 27832519 [TBL] [Abstract][Full Text] [Related]
38. Impact of full field digital mammography on the classification and mammographic characteristics of interval breast cancers. Knox M; O'Brien A; Szabó E; Smith CS; Fenlon HM; McNicholas MM; Flanagan FL Eur J Radiol; 2015 Jun; 84(6):1056-61. PubMed ID: 25816990 [TBL] [Abstract][Full Text] [Related]
39. Mammographic texture resemblance generalizes as an independent risk factor for breast cancer. Nielsen M; Vachon CM; Scott CG; Chernoff K; Karemore G; Karssemeijer N; Lillholm M; Karsdal MA Breast Cancer Res; 2014 Apr; 16(2):R37. PubMed ID: 24713478 [TBL] [Abstract][Full Text] [Related]
40. Diagnostic performance of digital breast tomosynthesis and full-field digital mammography with new reconstruction and new processing for dose reduction. Endo T; Morita T; Oiwa M; Suda N; Sato Y; Ichihara S; Shiraiwa M; Yoshikawa K; Horiba T; Ogawa H; Hayashi Y; Sendai T; Arai T Breast Cancer; 2018 Mar; 25(2):159-166. PubMed ID: 28956298 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]